コンテンツへスキップ ナビゲーションに移動

青の統計学

  • 統計学
    • 推定・検定
    • ベイズ統計学
    • 時系列解析
    • 計量経済学
    • 医薬・生物統計
  • 機械学習
    • 教師あり学習
    • 教師なし学習
    • Python
    • 深層学習
    • 自然言語処理
  • 統計検定対策
  • マーケティング
    • データ分析
    • 因果推論
  • DS Playground
  • 資料

統計検定対策

  1. HOME
  2. 統計検定対策
【第2弾】統計検定準1級のチートシート|最短合格への道
09/03/2023 / 最終更新日時 : 10/26/2025 Blue 統計検定

【第2弾】統計検定準1級のチートシート|最短合格への道

こんにちは、青の統計学です。 こちらの記事だけでは、紹介しきれない内容があったため第二弾のチートシートになります。 【最短合格】統計検定準一級のチートシート|難易度や出題範囲について 統計検定2級はこちら→【最短】統計検 […]

【最短合格】統計検定準一級のチートシート|難易度や出題範囲について
08/06/2023 / 最終更新日時 : 11/23/2025 Blue 統計検定

【最短合格】統計検定準一級のチートシート|難易度や出題範囲について

統計検定準1級の頻出テーマである分散分析のF値計算、ロジスティック回帰のオッズ比、ブラウン運動などの重要公式を「チートシート」として整理。難易度が高い分野の要点を押さえ、最短合格を目指すための試験直前チェックリストです。

ラスパイレス指数とパーシェ指数を比較
05/07/2023 / 最終更新日時 : 11/08/2025 Blue 統計学

ラスパイレス指数とパーシェ指数をわかりやすく解説!計算方法と使い分け【統計検定】

ラスパイレス指数とパーシェ指数とは?物価変動を測る両指数の違い、計算方法、特徴(代替効果)、使い分けを具体例で分かりやすく解説します。消費者物価指数など統計検定対策にも最適です。

分散不均一についての記事【青の統計学】
04/22/2023 / 最終更新日時 : 11/08/2025 Blue 統計学

【統計学】分散不均一だと何が問題なのか|不偏性とガウスマルコフ性について

統計学の「分散不均一性」とは何か、なぜ問題となるのかを分かりやすく解説します。回帰分析(OLS)における「不偏性」や「ガウス・マルコフの定理」との関係性、分散不均一が推定に与える影響までを学びたい方におすすめです。

サムネイル
03/05/2023 / 最終更新日時 : 10/26/2025 Blue 教師なし学習

【python】主成分分析(+回帰)の仕組みとコード例|教師なし学習

こんにちは、青の統計学です。 今回は教師なし学習の一つ「主成分分析」について解説いたします。 以下の記事よりも数学的背景を重めに取り扱っております。 【共線性解決!?】pythonで主成分分析(PCA)をやってみた 主成 […]

有限母集団修正についての手引き
02/14/2023 / 最終更新日時 : 10/26/2025 Blue 統計学

【統計検定】有限母集団修正についてわかりやすく解説|無限母集団との違い

有限母集団修正(Finite Population Correction, FPC) 有限母集団修正とは、有限母集団からの標本抽出に関連するバイアスを補正するための手法です。 まず、モチベーションから確認していきましょう […]

ゼロ過剰ポアソン分布について使い道と他の分布との違いを理解
02/14/2023 / 最終更新日時 : 11/12/2025 Blue 確率分布

ゼロ過剰ポアソン分布(ZIP分布)をわかりやすく解説

ゼロ過剰ポアソン分布(ZIP分布)を徹底解説。データに0が多い場合の対処法として、定義や期待値・分散の導出、EMアルゴリズムを用いた最尤推定の手順まで網羅しています。通常のポアソン分布との違いや使い分けを学びたい方におすすめです。統計検定対策にも。

一様分布を離散と連続を含めわかりやすく解説する
01/28/2023 / 最終更新日時 : 10/26/2025 Blue 確率分布

【例題あり】一様分布についてわかりやすく解説

一様分布 一様分布は最もシンプルな連続確率分布の一つで、「同じ確率で起こる」という直感的な概念を数学的に表現したものです。 例えばこんな感じです。 では、早速みていきましょう。 連続型一様分布 一様分布の特徴の一つが、連 […]

【python】Lasso(ラッソ)回帰で疎なデータに対応しよう|機械学習
01/21/2023 / 最終更新日時 : 10/26/2025 Blue 教師あり学習

【python】Lasso(ラッソ)回帰で疎なデータに対応しよう|機械学習

こんにちは、青の統計学です。 今回は、スパース学習の代表例である、Lasso(回帰)について解説いたします。 正則化項にL2ノルムを使う、リッジ回帰については、以下のコンテンツをご覧ください。 【python】Ridge […]

【統計検定】フィッシャー情報量とクラメール・ラオの不等式について解説|python
01/08/2023 / 最終更新日時 : 10/26/2025 Blue 統計学

【統計検定】フィッシャー情報量とクラメール・ラオの不等式について解説|python

こんにちは、青の統計学です。 今回は、正規分布を例に取って、フィッシャー情報量とクラメール・ラオの不等式について深掘りできればと思います。 統計検定準一級の試験範囲にもなっておりますので、この機会に是非理解していきましょ […]

p値をわかりやすく解説する【青の統計学】
12/30/2022 / 最終更新日時 : 10/26/2025 Blue 推定・検定

p値をわかりやすく解説|検出力を使った具体例

1. p値の定義と計算方法 1.1 p値の定義 p値 は、統計検定において次のように定義される数値です。 ここでいう「極端な値」とは、検定手法や両側検定・片側検定によって定義が変わります。 たとえば平均値に関する両側検定 […]

サムネイル
12/20/2022 / 最終更新日時 : 10/26/2025 Blue 教師なし学習

【判別問題】サポートベクトルマシン(SVM)の仕組み|python

今回は2値の判別問題で効果を発揮する、サポートベクトルマシン(support vector machine)について解説いたします。 数理最適化も扱うことになるのでいい勉強になると思います。 非線形分離に関しては以下のコ […]

【多変量解析】ROC曲線とAUCによる判別分析|python
12/16/2022 / 最終更新日時 : 10/26/2025 Blue 教師あり学習

【多変量解析】ROC曲線とAUCによる判別分析|python

機械学習の問題は回帰問題と分類問題に大別されます。 そして、分類問題の指標でよく扱われるかつ、不均衡問題で威力を発揮する「ROC曲線」と「AUC」について今回は解説していきます。 統計検定準一級の範囲にもしっかり入ってお […]

サムネイル
12/15/2022 / 最終更新日時 : 10/26/2025 Blue 教師あり学習

【python】Ridge(リッジ)回帰で多重共線性を解決する話

リッジ回帰とは、重回帰分析の一つであり、機械学習には厄介な「多重共線性」の影響を少なくできる手法のひとつです。 複雑なデータをモデルに当てはめるときには、一般に多くの説明変数を使って表現をしますが、 説明変数が増えるほど […]

【確率分布の特徴を知りたい】モーメント法をわかりやすく解説
12/02/2022 / 最終更新日時 : 11/07/2025 Blue 統計学

【確率分布の特徴を知りたい】モーメント法をわかりやすく解説

モーメント法とは?確率分布の平均や分散などの特徴を捉える「モーメント」を使い、パラメータを推定する仕組みを数学的背景から解説。統計検定準1級対策にも最適です。

サムネイル
11/30/2022 / 最終更新日時 : 10/26/2025 Blue 教師あり学習

【機械学習】決定木の仕組みと実装方法について|python

今回は、決定木(Decision Tree)によるモデル構築方法をご紹介します。 決定木は、ある目的に到達するためにデータの書く属性の条件分岐を繰り返してクラス分けする方法です。 数学的な原理に加え、コードも紹介していき […]

ロジスティック分布とは?シグモイド関数との関わりも解説
11/27/2022 / 最終更新日時 : 11/03/2025 Blue 確率分布

ロジスティック分布とは?シグモイド関数との関わりも解説

ロジスティック分布の定義と性質をわかりやすく解説。なぜ累積分布関数がシグモイド関数になるのか、ロジスティック回帰や機械学習でどのように使われるのか、その数学的背景を学びます。

単回帰分析をわかりやすく解説する記事【青の統計学】
11/15/2022 / 最終更新日時 : 10/26/2025 Blue 教師あり学習

【機械学習】単回帰分析をわかりやすく解説|python

単回帰分析 教師あり学習 今回は、教師あり学習の基礎中の基礎である「単回帰分析」を実装します。 教師あり学習とは、説明変数(インプット)から目的変数(アウトプット)を予測するモデルを求める手法です。 訓練データには目的変 […]

階層型クラスタリング徹底比較|ウォード法・最短距離法などの使い分け
09/14/2022 / 最終更新日時 : 11/07/2025 Blue 教師なし学習

階層型クラスタリング徹底比較|ウォード法・最短距離法などの使い分け

階層型クラスタリングとは?ウォード法、最短距離法、群平均法など7手法を徹底比較。メリット・デメリットからクラスタ形状、使い分けまで、デンドログラムと共に解説します。

超幾何分布を正しく理解する
08/21/2022 / 最終更新日時 : 10/26/2025 Blue 確率分布

超幾何分布をわかりやすく解説|非復元抽出

1. 超幾何分布 1.1 超幾何分布とは 超幾何分布は、有限個からなる母集団から非復元抽出を行うときに、「特定の属性を持つ要素がサンプル中に何個含まれるか」を表す確率分布です。 例示:品質検査への応用 このとき、確率変数 […]

階層型クラスタリングとデンドログラムを解説|k-means法との比較
08/01/2022 / 最終更新日時 : 11/09/2025 Blue 教師なし学習

階層型クラスタリングとデンドログラムを解説|k-means法との比較

階層型クラスタリング(ウォード法)を実装する方法を解説します。デンドログラム(樹形図)の作成方法と見方、k-means法との違いまで、教師なし学習の基礎をサンプルコード付きで学びましょう。

順位相関係数についてわかりやすく解説する
07/23/2022 / 最終更新日時 : 10/26/2025 Blue 統計学

【外れ値に対処】順位相関係数と相関係数の違いについて | python

相関係数は、外れ値があると大きく値が変わってしまうという特徴があり、正確な関係の把握が難しい場合があります。 そこで、外れ値に対処できる頑健(ロバスト)な相関係数が必要とされます。 それが、スピアマンの順位相関係数と呼ば […]

マルコフ連鎖についてわかりやすく解説。
07/16/2022 / 最終更新日時 : 11/08/2025 Blue 統計学

マルコフ連鎖をわかりやすく解説【MCMC法への応用】

マルコフ連鎖の基本原理(マルコフ性・推移確率行列)と定常分布についてわかりやすく解説。さらに、ベイズ統計学で重要なMCMC法(マルコフ連鎖モンテカルロ法)への応用として、MH法やギブスサンプリングとの関係性もPythonコード例と共に紹介します。

Weltchのt検定をわかりやすく解説する
07/15/2022 / 最終更新日時 : 10/26/2025 Blue 推定・検定

【非等分散編】pythonでWelch(ウェルチ)のt検定をやってみた

2標本問題において、標本間の母分散が等しいという等分散の仮定は、限られた場でしか信憑性がありません。 今回は、標本間の母分散が異なるときに使えるWelchのt検定を学びましょう。 等分散の仮定を置いた2標本問題の方が簡単 […]

【完全ガイド】k-means法とは?周辺のクラスタリング手法と比較
07/09/2022 / 最終更新日時 : 11/08/2025 Blue 教師なし学習

【完全ガイド】k-means法とは?周辺のクラスタリング手法と比較

k-means法とは何か、そのアルゴリズムの仕組みやビジネスでの活用法をわかりやすく解説します。初期値問題や最適なクラスタ数kの決定方法(エルボー法)に加え、k-means++、X-means、ソフトk-meansなどの発展的手法も比較・紹介する完全ガイドです。

モーメント母関数の基礎をわかりやすく解説【青の統計学】
06/30/2022 / 最終更新日時 : 10/26/2025 Blue 統計学

【期待値の応用】モーメント母関数(積率母関数)について

統計検定準一級には、積率母関数についての問題があります。 マクローリン展開や合成関数の微分の知識が必要なことから、避けられがちですが、使う分には便利なものです。 今回は、モーメント法と積率母関数について解説します。 統計 […]

対数正規分布とは?ビジネスで使える便利な確率分布
06/29/2022 / 最終更新日時 : 11/08/2025 Blue 確率分布

対数正規分布とは?ビジネスで使える便利な確率分布

対数正規分布とは何か、その特徴や正規分布との違いをわかりやすく解説します。売上や需要予測など、ビジネスにおける在庫管理での具体的な活用例(平均・中央値・最頻値の計算)も紹介。データサイエンスに役立つ確率分布の知識を深めましょう。

等分散の仮定をした2標本検定について解説する
06/28/2022 / 最終更新日時 : 10/26/2025 Blue 推定・検定

【等分散の仮定編】2標本問題をわかりやすく解説|推定と検定

こんにちは、青の統計学です。 今回は、2標本問題について扱います。 確率変数が2つ登場するため難しいですが、応用上用いられることが多いのが「2標本問題」です。 中でも今回は、二つの確率変数が同一の分散であると仮定した「等 […]

幾何分布とは?意外とビジネスに役立つ確率分布
06/28/2022 / 最終更新日時 : 10/26/2025 Blue 確率分布

幾何分布とは?意外とビジネスに役立つ確率分布

1. 幾何分布(Geometric Distribution)の概要 幾何分布は、離散確率分布の一種で「ある試行を繰り返したときに、初めて成功が得られる試行回数に関する分布」を表します。 ビジネスの現場では「初回成功まで […]

多項分布とは?ビジネスの活用範囲の多い分布
06/28/2022 / 最終更新日時 : 10/26/2025 Blue 確率分布

多項分布とは?ビジネスの活用範囲の多い分布

多項分布って? 多項分布とは、複数のカテゴリにまたがって起こりうる事象を、一定回数の試行によって観測したときに、その観測結果がどのような確率で生じるかを表す分布です。 具体的には、サイコロを何度も振った場合に1の目が何回 […]

ガンマ分布とは?リスク解析と保険数理について
06/27/2022 / 最終更新日時 : 10/26/2025 Blue 確率分布

ガンマ分布とは?リスク解析と保険数理に使える分布

ガンマ分布とは ガンマ分布とは、連続型の確率分布の一種で、主に「待ち時間」や「寿命」「損害額」などのモデリングに広く使われる分布です。その汎用性の高さが特徴的です。 ガンマ分布はふたつのパラメータ(しばしば形状パラメータ […]

ベイズの定理とベイズ統計学についてわかりやすく解説する
06/25/2022 / 最終更新日時 : 11/06/2025 Blue ベイズ統計学

ベイズ推定をわかりやすく解説|事後分布から推定量を導く方法

ベイズ推定の目的 ベイズの定理からしっかり解説するので、これからベイズ推定について知見を深めたい人や、MCMC法を使ってベイズ推定をしたい方など、さまざまな人におすすめです。 ベイズの定理 まず第一にベイズ統計学は、経験 […]

ガウスマルコフの定理をわかりやすく解説する記事
06/24/2022 / 最終更新日時 : 10/26/2025 Blue 統計学

【MSEを最小化】ガウス・マルコフの定理と最良線形不偏推定量について

回帰分析等で算出した推定量を評価するとき、どのような指標があるでしょうか。 これまでは、一致性や不偏性を取り上げてきました。簡単に復習しましょう。 一致性(consistency):サンプル数を∞に近づけると、推定量はパ […]

投稿のページ送り

  • «
  • 固定ページ 1
  • 固定ページ 2
  • 固定ページ 3
  • »

人気記事

統計検定2級の完全ガイド
青の統計学DsPlaygroundの販促バナー_統計検定2級
統計検定3級の徹底攻略
青の統計学DsPlaygroundの販促バナー_G検定
青の統計学DsPlaygroundの販促バナー_数学入門
大学生向けのG検定の攻略記事のサムネイル

Youtube

Udemy

バナー広告

Ds Playground

青の統計学|X

Update Contents

【最短合格】統計検定準一級のチートシート|難易度や出題範囲について
【最短合格】統計検定準一級のチートシート|難易度や出題範囲について
11/23/2025
【API】Google Search Consoleから1000行以上の検索クエリを取得したい|Google Cloud
【API】Google Search Consoleから1000行以上の検索クエリを取得したい|Google Cloud
11/23/2025
【大学数学の壁】イプシロン・デルタ論法をわかりやすく解説
11/21/2025
ベイズ因子をABテストに使ってみる
ベイズ因子とは?──定義と直感的解釈
11/19/2025
パス解析をわかりやすく解説する記事
パス解析をわかりやすく解説:因果推論からMMMまで
11/19/2025
マーケティングミックスモデリング(MMM)について理解
【完全版】MMMを課題設定から考える|Google Meridian
11/19/2025
トービットモデルについて数学的背景から解説する
トービットモデルとは?わかりやすく解説【潜在変数】|計量経済学
11/18/2025
第一種の過誤や第二種の過誤を正しく理解するための記事【青の統計学】
【仮説検定】第1種の過誤と第2種の過誤とは?
11/18/2025
ゼロ過剰ポアソン分布について使い道と他の分布との違いを理解
ゼロ過剰ポアソン分布(ZIP分布)をわかりやすく解説
11/12/2025
ガウス過程回帰の仕組みと実務での応用をわかりやすく解説|ノンパラメトリック機械学習
ガウス過程回帰の仕組みと実務での応用をわかりやすく解説|ノンパラメトリック機械学習
11/12/2025

New Contents

【大学数学の壁】イプシロン・デルタ論法をわかりやすく解説
11/21/2025
【超入門】統計学とは?文系でもわかる『データを武器にする』ための第一歩
【超入門】統計学とは?文系でもわかる『データを武器にする』ための第一歩
08/07/2025
ローレンツ曲線・ジニ係数・パレート分布をまとめて理解|不平等を数学で捉える
ローレンツ曲線・ジニ係数・パレート分布をまとめて理解|不平等を数学で捉える
07/15/2025
【カイ2乗検定】独立性検定と適合度検定についてわかりやすく解説
【カイ2乗検定】独立性検定と適合度検定についてわかりやすく解説
06/23/2025
中心極限定理についてわかりやすく解説|大数の法則との違い
中心極限定理についてわかりやすく解説|大数の法則との違い
06/07/2025
大学生向けのG検定の攻略記事のサムネイル
【体験談】G検定は大学生でも受かる?合格率、難易度、試験範囲を徹底解説
05/17/2025
スペクトラルクラスタリングとは?非線形データの分類
スペクトラルクラスタリングとは?非線形データの分類
03/18/2025
DBSCANとは?密度ベースのクラスタリング
DBSCANとは?密度ベースのクラスタリングを解説
03/16/2025
確率密度関数とは?確率質量関数との違いも解説
確率密度関数とは?確率質量関数との違いも解説
02/25/2025
効果量とは?サンプルサイズ設計を実務で使うには
効果量とは?サンプルサイズ設計を実務で使うには
02/03/2025

Tag Cloud

AIC DID F統計量 GBDT GLM K-means法 KL divergence MCMC法 MSE PCA p値 ridge回帰 t検定 カイ2乗分布 ガンマ分布 ポアソン分布 マルコフ連鎖 モーメント法 ラグランジュの未定乗数法 ランダムウォーク ランダムフォレスト ロジスティック回帰 一様分布 不偏性 中心極限定理 二項分布 信頼区間 傾向スコア 再生性 分散分析 回帰分析 固定効果 多重共線性 大数の法則 尤度関数 層化抽出法 幾何分布 指数分布 最尤法 標準偏差 標準誤差 正規分布 決定木 相関係数 統計検定対策

Recent

【最短合格】統計検定準一級のチートシート|難易度や出題範囲について
【最短合格】統計検定準一級のチートシート|難易度や出題範囲について
11/23/2025
【API】Google Search Consoleから1000行以上の検索クエリを取得したい|Google Cloud
【API】Google Search Consoleから1000行以上の検索クエリを取得したい|Google Cloud
11/23/2025
【大学数学の壁】イプシロン・デルタ論法をわかりやすく解説
11/21/2025
ベイズ因子をABテストに使ってみる
ベイズ因子とは?──定義と直感的解釈
11/19/2025
パス解析をわかりやすく解説する記事
パス解析をわかりやすく解説:因果推論からMMMまで
11/19/2025
マーケティングミックスモデリング(MMM)について理解
【完全版】MMMを課題設定から考える|Google Meridian
11/19/2025
トービットモデルについて数学的背景から解説する
トービットモデルとは?わかりやすく解説【潜在変数】|計量経済学
11/18/2025
第一種の過誤や第二種の過誤を正しく理解するための記事【青の統計学】
【仮説検定】第1種の過誤と第2種の過誤とは?
11/18/2025
ゼロ過剰ポアソン分布について使い道と他の分布との違いを理解
ゼロ過剰ポアソン分布(ZIP分布)をわかりやすく解説
11/12/2025
ガウス過程回帰の仕組みと実務での応用をわかりやすく解説|ノンパラメトリック機械学習
ガウス過程回帰の仕組みと実務での応用をわかりやすく解説|ノンパラメトリック機械学習
11/12/2025

サイトマップはこちら

青の統計学|Follow Me!

青の統計学DsPlaygroundの販促バナー_統計検定2級
青の統計学DsPlaygroundの販促バナー_G検定

チートシート

バナー広告


バナー広告

バナー広告
バナー広告
バナー広告

シミュレーション

サンプルサイズ設計ツールのサムネイル

問題演習

統計検定2級問題演習へのリンク
  • 統計学
  • 機械学習
  • 統計検定対策
  • マーケティング
  • DS Playground
  • 資料

Copyright © 青の統計学 All Rights Reserved.

Powered by WordPress with Lightning Theme & VK All in One Expansion Unit

MENU

  • 統計学
    • 推定・検定
    • ベイズ統計学
    • 時系列解析
    • 計量経済学
    • 医薬・生物統計
  • 機械学習
    • 教師あり学習
    • 教師なし学習
    • Python
    • 深層学習
    • 自然言語処理
  • 統計検定対策
  • マーケティング
    • データ分析
    • 因果推論
  • DS Playground
  • 資料
PAGE TOP