コンテンツへスキップ ナビゲーションに移動

青の統計学

  • 統計学
    • 推定・検定
    • ベイズ統計学
    • 時系列解析
    • 計量経済学
    • 医薬・生物統計
  • 機械学習
    • 教師あり学習
    • 教師なし学習
    • Python
    • 深層学習
    • 自然言語処理
  • 統計検定対策
  • マーケティング
    • データ分析
    • 因果推論
  • DS Playground
  • 資料

ポアソン分布

  1. HOME
  2. ポアソン分布
負の二項分布を実験に活かした具体例
01/04/2025 / 最終更新日時 : 10/29/2025 Blue 確率分布

負の二項分布をわかりやすく解説

負の二項分布をわかりやすく解説。定義、期待値、分散、幾何分布との関係を説明。ポアソン分布で扱えない「過分散」のモデル化や、生物学分野での応用例、Pythonでの推定方法も紹介。

統計検定2級の完全ガイド
08/31/2024 / 最終更新日時 : 10/29/2025 Blue 統計検定

統計検定2級の難易度と範囲を徹底解説【2025年最新版】

統計検定2級の難易度、合格率、広範な出題範囲を徹底解説。効率的な勉強法やCBT試験対策、チートシートの活用法まで、合格に必要な情報を網羅した完全ガイドです。データサイエンス実務の第一歩に。

モーメント母関数のチートシートに関するサムネイル
01/06/2024 / 最終更新日時 : 11/06/2025 Blue 統計学基礎

【統計検定】確率分布のモーメント(積率)母関数完全ガイド|導出チートシート

統計検定対策に必須!主要な確率分布(正規分布、ポアソン分布、二項分布など)のモーメント母関数(積率母関数)の導出方法を一覧で解説。期待値や分散の計算をマスターしたい方必見のチートシートです。

ゼロ過剰ポアソン分布について使い道と他の分布との違いを理解
02/14/2023 / 最終更新日時 : 10/26/2025 Blue 確率分布

ゼロ過剰ポアソン分布(ZIP分布)をわかりやすく解説

ゼロ過剰ポアソン分布とは カウントデータ(離散的な非負整数値)を分析する際、ポアソン分布がよく使用されます。 しかし、実際のデータでは「0」の観測値が理論上の予測よりも多く出現することがあります。このような現象に対応する […]

一般化線形混合モデルについて基礎から理解する
06/08/2022 / 最終更新日時 : 10/26/2025 Blue 統計学

【GLMM】一般化線形混合モデルについてわかりやすく解説

1. 一般化線形モデル (GLM) と固定効果モデル まずは、前提知識を確認しましょう。 2. 一般化線形混合モデル (GLMM) の位置づけと特長 「GLMM = 一般化線形モデル + 混合効果」GLMM は、一般化線 […]

尤度と尤度関数を正しく理解するための記事
06/06/2022 / 最終更新日時 : 10/26/2025 Blue 統計学

【尤度とは?】最尤法についてわかりやすく解説|最尤推定量

こんにちは、青の統計学です。 今回は、統計学の中で必須の知識「尤度」について解説いたします。 尤度とは? 確率と尤度の違い 確率は「あるモデルやパラメータが与えられたときに、特定のデータが得られる可能性」を表します。例え […]

ポアソン過程を解説する記事【青の統計学】
05/30/2022 / 最終更新日時 : 10/26/2025 Blue 統計学

【統計検定】ポアソン過程をわかりやすく解説|待ち行列理論

こんにちは、青の統計学です。 今回は統計検定準一級から登場する確立過程の一つ「ポアソン過程」について解説いたします。 このコンテンツに全て詰まっているのでブックマーク推奨です! 関わりの深い生存時間解析は、こちらで学習で […]

一般化線形モデルについてのわかりやすい解説
05/24/2022 / 最終更新日時 : 10/26/2025 Blue 統計学

【GLM】一般化線形モデルをわかりやすく解説|ポアソン回帰

一般化線形モデル(generalized liner model) 今回はGLMと呼ばれる「一般化線形モデル(generalized liner model)」を解説します。 よく似た名前として、分散分析や共分散分析など […]

ポアソン過程を解説する記事【青の統計学】
04/23/2022 / 最終更新日時 : 10/26/2025 Blue 確率分布

【統計学】ポアソン分布についてわかりやすく解説

 ポアソン分布(poisson distribution) 統計学および確率論で用いられるポアソン分布とは、ある事象が一定の時間内に発生する回数を表す離散確率分布です。 定数\( \lambda > 0\ […]

人気記事

統計検定2級の完全ガイド
青の統計学DsPlaygroundの販促バナー_統計検定2級
統計検定3級の徹底攻略
青の統計学DsPlaygroundの販促バナー_G検定
青の統計学DsPlaygroundの販促バナー_数学入門
大学生向けのG検定の攻略記事のサムネイル

Youtube

Udemy

バナー広告

Ds Playground

青の統計学|X

Update Contents

ベイズの定理とベイズ統計学についてわかりやすく解説する
ベイズ推定をわかりやすく解説|事後分布から推定量を導く方法
11/06/2025
モーメント母関数のチートシートに関するサムネイル
【統計検定】確率分布のモーメント(積率)母関数完全ガイド|導出チートシート
11/06/2025
VAEについてわかりやすく解説する
【深層生成モデル】VAEの仕組みをわかりやすく解説|ベイズ統計
11/06/2025
多変量正規分布についてわかりやすく解説する
多変量正規分布の確率密度関数と主な性質を解説|機械学習・統計学の基礎
11/06/2025
ロジスティク回帰について数学的背景も踏まえて解説
ロジスティック回帰についてわかりやすく解説【二項分布】【統計検定】
11/04/2025
尤度比検定の使い方を具体例を通して理解する
尤度比検定とは?わかりやすく解説|カイ2乗分布との関わり
11/04/2025
オッズとオッズ比を理解する
【ベイズ因子】オッズ比の使われ方を紹介します
11/04/2025
二項分布を基礎から応用まで解説
【完全版】二項分布をわかりやすく説明|統計学
11/03/2025
ロジスティック分布とは?シグモイド関数との関わりも解説
ロジスティック分布とは?シグモイド関数との関わりも解説
11/03/2025
不偏性について正しく理解する記事
不偏性と不偏分散についてわかりやすく解説
11/02/2025

New Contents

【超入門】統計学とは?文系でもわかる『データを武器にする』ための第一歩
【超入門】統計学とは?文系でもわかる『データを武器にする』ための第一歩
08/07/2025
ローレンツ曲線・ジニ係数・パレート分布をまとめて理解|不平等を数学で捉える
ローレンツ曲線・ジニ係数・パレート分布をまとめて理解|不平等を数学で捉える
07/15/2025
【カイ2乗検定】独立性検定と適合度検定についてわかりやすく解説
【カイ2乗検定】独立性検定と適合度検定についてわかりやすく解説
06/23/2025
中心極限定理についてわかりやすく解説|大数の法則との違い
中心極限定理についてわかりやすく解説|大数の法則との違い
06/07/2025
大学生向けのG検定の攻略記事のサムネイル
【体験談】G検定は大学生でも受かる?合格率、難易度、試験範囲を徹底解説
05/17/2025
スペクトラルクラスタリングとは?非線形データの分類
スペクトラルクラスタリングとは?非線形データの分類
03/18/2025
DBSCANとは?密度ベースのクラスタリング
DBSCANとは?密度ベースのクラスタリングを解説
03/16/2025
確率密度関数とは?確率質量関数との違いも解説
確率密度関数とは?確率質量関数との違いも解説
02/25/2025
効果量とは?サンプルサイズ設計を実務で使うには
効果量とは?サンプルサイズ設計を実務で使うには
02/03/2025
統計的なサンプルサイズ設計の手引き
サンプルサイズ設計のガイド:基礎理論と実践をわかりやすく
01/10/2025

Tag Cloud

AIC F統計量 GBDT GLM K-means法 KL divergence MCMC法 MSE PCA p値 ridge回帰 t検定 カイ2乗分布 ガンマ分布 ポアソン分布 マルコフ連鎖 モーメント法 ラグランジュの未定乗数法 ランダムウォーク ランダムフォレスト ロジスティック回帰 一様分布 不偏性 中心極限定理 二項分布 信頼区間 傾向スコア 再生性 分散分析 回帰分析 固定効果 多重共線性 大数の法則 尤度関数 層化抽出法 幾何分布 指数分布 最小二乗法 最尤法 標準偏差 標準誤差 正規分布 決定木 相関係数 統計検定対策

Recent

ベイズの定理とベイズ統計学についてわかりやすく解説する
ベイズ推定をわかりやすく解説|事後分布から推定量を導く方法
11/06/2025
モーメント母関数のチートシートに関するサムネイル
【統計検定】確率分布のモーメント(積率)母関数完全ガイド|導出チートシート
11/06/2025
VAEについてわかりやすく解説する
【深層生成モデル】VAEの仕組みをわかりやすく解説|ベイズ統計
11/06/2025
多変量正規分布についてわかりやすく解説する
多変量正規分布の確率密度関数と主な性質を解説|機械学習・統計学の基礎
11/06/2025
ロジスティク回帰について数学的背景も踏まえて解説
ロジスティック回帰についてわかりやすく解説【二項分布】【統計検定】
11/04/2025
尤度比検定の使い方を具体例を通して理解する
尤度比検定とは?わかりやすく解説|カイ2乗分布との関わり
11/04/2025
オッズとオッズ比を理解する
【ベイズ因子】オッズ比の使われ方を紹介します
11/04/2025
二項分布を基礎から応用まで解説
【完全版】二項分布をわかりやすく説明|統計学
11/03/2025
ロジスティック分布とは?シグモイド関数との関わりも解説
ロジスティック分布とは?シグモイド関数との関わりも解説
11/03/2025
不偏性について正しく理解する記事
不偏性と不偏分散についてわかりやすく解説
11/02/2025

サイトマップはこちら

青の統計学|Follow Me!

青の統計学DsPlaygroundの販促バナー_統計検定2級
青の統計学DsPlaygroundの販促バナー_G検定

チートシート

バナー広告


バナー広告

バナー広告
バナー広告
バナー広告

シミュレーション

サンプルサイズ設計ツールのサムネイル

問題演習

統計検定2級問題演習へのリンク
  • 統計学
  • 機械学習
  • 統計検定対策
  • マーケティング
  • DS Playground
  • 資料

Copyright © 青の統計学 All Rights Reserved.

Powered by WordPress with Lightning Theme & VK All in One Expansion Unit

MENU

  • 統計学
    • 推定・検定
    • ベイズ統計学
    • 時系列解析
    • 計量経済学
    • 医薬・生物統計
  • 機械学習
    • 教師あり学習
    • 教師なし学習
    • Python
    • 深層学習
    • 自然言語処理
  • 統計検定対策
  • マーケティング
    • データ分析
    • 因果推論
  • DS Playground
  • 資料
PAGE TOP