コンテンツへスキップ ナビゲーションに移動

青の統計学

  • 統計学
    • 推定・検定
    • ベイズ統計学
    • 時系列解析
    • 計量経済学
    • 医薬・生物統計
  • 機械学習
    • 教師あり学習
    • 教師なし学習
    • Python
    • 深層学習
    • 自然言語処理
  • 統計検定対策
  • マーケティング
    • データ分析
    • 因果推論
  • DS Playground
  • 資料

統計学基礎

  1. HOME
  2. 統計学
  3. 統計学基礎
【超入門】統計学とは?文系でもわかる『データを武器にする』ための第一歩
08/07/2025 / 最終更新日時 : 10/26/2025 Blue 統計学

【超入門】統計学とは?文系でもわかる『データを武器にする』ための第一歩

こんにちは、青の統計学です。 今回は統計学の基本的な考え方から、それがどのように事象を理解し、変える手助けとなるのかを、数式無しで分かりやすく、そして深く掘り下げていきます。統計学への第一歩を踏み出し、データを味方につけ […]

中心極限定理についてわかりやすく解説|大数の法則との違い
06/07/2025 / 最終更新日時 : 10/26/2025 Blue 統計学

中心極限定理についてわかりやすく解説|大数の法則との違い

こんにちは、青の統計学です。 昨今だと、高校の情報の授業でも中心極限定理や大数の法則が扱われるようになりましたね。 今回は、中心極限定理の直観的な解釈や理論まで理解してみましょう。 1. 数学的背景 1.1 確率変数と確 […]

確率密度関数とは?確率質量関数との違いも解説
02/25/2025 / 最終更新日時 : 10/26/2025 Blue 統計学

確率密度関数とは?確率質量関数との違いも解説

1. 確率密度関数とは? 確率密度関数(PDF)は、ある範囲内で確率変数がどのように分布するかを表す関数です。 確率密度関数の値自体は「確率」を直接示すものではなく、ある区間内に確率変数が収まる確率は、確率密度関数をその […]

グラフニューラルネットワークの基礎と応用事例
01/08/2025 / 最終更新日時 : 10/26/2025 Blue 機械学習

グラフニューラルネットワークの基礎と応用事例

1. はじめに 我々の周囲に存在するデータは、必ずしも「画像 (2次元格子)」や「テキスト (系列構造)」のように整然としているわけではありません。ソーシャルネットワークや分子構造、交通ネットワークなど、多くの情報は「ノ […]

偏相関係数と相関係数について理解する
08/04/2024 / 最終更新日時 : 10/26/2025 Blue 統計学

【統計検定】偏相関係数の概念と計算方法 – 多変量解析の基礎

こんにちは、青の統計学です! 今回は、偏相関係数 について解説します。 相関係数よりも、より変数間の因果関係に踏み込んだ議論ができます。 相関係数については、こちらのコンテンツをご覧ください。 偏相関係数 偏相関係数は、 […]

変動係数について使い方と解釈を理解する記事
07/25/2024 / 最終更新日時 : 10/26/2025 Blue 統計学

変動係数とは?わかりやすく解説|統計検定2級

こんにちは、青の統計学です。 今回は、変動係数 について解説します。 変動係数とは? まず概要から言うと、変動係数は確率変数の相対的な散らばり具合を表す尺度です。 $$変動係数 = \frac{標準偏差}{平均値}$$ […]

共分散と相関係数の違いを丁寧に解説
07/20/2024 / 最終更新日時 : 10/26/2025 Blue 統計学

共分散と相関係数をわかりやすく解説 – 2変数間の関係性を測る指標

こんにちは、青の統計学です! 今回は、相関係数と共分散 について解説します。 高校でも習うと思いますが、しっかりと定義を理解できているでしょうか? 大学以降は、多変量版も考える必要があるのでこの記事を機会に勉強してみてく […]

期待値と分散についてわかりやすく解説
07/17/2024 / 最終更新日時 : 10/26/2025 Blue 統計学

期待値と分散について|確率論と統計学の重要概念をわかりやすく解説

こんにちは、青の統計学です! 今回は、データの解釈や意思決定を行うために役立つ、期待値と分散 について解説します。 簡単だからといって、曖昧な理解をしていないでしょうか?? 数学的背景も踏まえて、理解が深まる構成にしてい […]

Transformerでも使われるソフトマックス関数について解説する
04/21/2024 / 最終更新日時 : 10/26/2025 Blue 機械学習

【Transformer】ソフトマックス関数についてわかりやすく解説|python

こんにちは、青の統計学です。 今日は、GPT等の生成AIモデルでも使われているtransformerの中にあるソフトマックス関数についてご紹介いたします。 そのほかの非線形変換について詳しく知りたい方は、以下のコンテンツ […]

【統計検定】確率分布のモーメント(積率)母関数完全ガイド|導出チートシート
01/06/2024 / 最終更新日時 : 10/26/2025 Blue 統計学基礎

【統計検定】確率分布のモーメント(積率)母関数完全ガイド|導出チートシート

こんにちは、青の統計学です。 今回は、統計検定のチートシート番外編として、確率分布についてまとめようと思います。 各確率分布のモーメント母関数(積率母関数)が求められると、期待値と分散が計算できるようになります。 計算量 […]

サムネイル
03/05/2023 / 最終更新日時 : 10/26/2025 Blue 教師なし学習

【python】主成分分析(+回帰)の仕組みとコード例|教師なし学習

こんにちは、青の統計学です。 今回は教師なし学習の一つ「主成分分析」について解説いたします。 以下の記事よりも数学的背景を重めに取り扱っております。 【共線性解決!?】pythonで主成分分析(PCA)をやってみた 主成 […]

サムネイル
12/15/2022 / 最終更新日時 : 10/26/2025 Blue 教師あり学習

【python】Ridge(リッジ)回帰で多重共線性を解決する話

リッジ回帰とは、重回帰分析の一つであり、機械学習には厄介な「多重共線性」の影響を少なくできる手法のひとつです。 複雑なデータをモデルに当てはめるときには、一般に多くの説明変数を使って表現をしますが、 説明変数が増えるほど […]

順位相関係数についてわかりやすく解説する
07/23/2022 / 最終更新日時 : 10/26/2025 Blue 統計学

【外れ値に対処】順位相関係数と相関係数の違いについて | python

相関係数は、外れ値があると大きく値が変わってしまうという特徴があり、正確な関係の把握が難しい場合があります。 そこで、外れ値に対処できる頑健(ロバスト)な相関係数が必要とされます。 それが、スピアマンの順位相関係数と呼ば […]

オッズとオッズ比を理解する
06/13/2022 / 最終更新日時 : 10/26/2025 Blue 統計学

【ベイズ因子】オッズ比の使われ方を紹介します

こんにちは、青の統計学です。 今回はロジスティック回帰の解釈で定番の、オッズ比について考えていきます。 オッズ比は二つのカテゴリに分けられるデータに対して有用な指標であり、特に、疾患や事象が発生する確率について研究する際 […]

尤度と尤度関数を正しく理解するための記事
06/06/2022 / 最終更新日時 : 10/26/2025 Blue 統計学

【尤度とは?】最尤法についてわかりやすく解説|最尤推定量

こんにちは、青の統計学です。 今回は、統計学の中で必須の知識「尤度」について解説いたします。 尤度とは? 確率と尤度の違い 確率は「あるモデルやパラメータが与えられたときに、特定のデータが得られる可能性」を表します。例え […]

AICとBICの比較をしつつ、評価指標について解説する
06/03/2022 / 最終更新日時 : 10/26/2025 Blue 統計学

【モデル選択】AIC(赤池情報量基準)についてわかりやすく解説

1:AICとは何か AICは「複数の統計モデルのうち、どれがより予測に適しているか」を評価するために考案された指標です。 もし「当てはまりの良さ」だけを追求すると、パラメータを増やせば増やすほどモデルはデータにぴったり合 […]

一般化線形モデルについてのわかりやすい解説
05/24/2022 / 最終更新日時 : 10/26/2025 Blue 統計学

【GLM】一般化線形モデルをわかりやすく解説|ポアソン回帰

一般化線形モデル(generalized liner model) 今回はGLMと呼ばれる「一般化線形モデル(generalized liner model)」を解説します。 よく似た名前として、分散分析や共分散分析など […]

標準誤差について数学的背景から解説する
05/13/2022 / 最終更新日時 : 10/26/2025 Blue 統計学

【統計】標準誤差を例題を通してわかりやすく解説|python

統計検定などで、信頼区間を求めることは多くあります。 そこで必要なのが標準誤差という概念です。 分布によって誤差の作り方が異なったりするため厄介です。 丁寧に学んでいきましょう。 標準誤差(standard error) […]

分散と標準偏差を基礎から解説する
05/10/2022 / 最終更新日時 : 10/26/2025 Blue Python

【高校数学でわかる】分散と標準偏差をわかりやすく解説|散らばりの指標

分散(variance)と標準偏差(standard deviation) こんにちは、青の統計学です。 今回は、統計の基本である分散と標準偏差について解説していきます。 高校数学でも扱われる内容なので、高度な数学は必要 […]

不偏性について正しく理解する記事
05/01/2022 / 最終更新日時 : 10/26/2025 Blue 統計学

不偏性と不偏分散についてわかりやすく解説

不偏性(unbiasedness) 不偏分散とは、分散の中でも不偏性を持つ分散のことです。 まずは、不偏性から理解していきましょう。 「不偏性がある」とは、標本平均の期待値が母平均に一致することを指します。 数式で書くと […]

歪度と尖度をわかりやすく解説【青の統計学】
04/24/2022 / 最終更新日時 : 10/26/2025 Blue 統計学

【統計検定2級】歪度と尖度をわかりやすく解説|python

こんにちは、青の統計学です。 今回は尖度と歪度という2つの統計量をみてみましょう。 モーメントを使った算出式を使っておりますが、尖度と歪度の計算の仕方は色々あります。 歪度/skewness $$\frac{E[(x-μ […]

決定係数について使い方と注意点を丁寧に解説する
04/22/2022 / 最終更新日時 : 10/26/2025 Blue 統計学

【R^2】決定係数をわかりやすく説明|python

こんにちは、青の統計学です。 今回は、決定係数について解説します。 決定係数とは、作った回帰モデルはどの程度学習データと当てはまっているのか調べる方法の一つです。 統計検定2級に挑戦したい方は、こちらのnoteもぜひご覧 […]

人気記事

統計検定2級の完全ガイド
青の統計学DsPlaygroundの販促バナー_統計検定2級
統計検定3級の徹底攻略
青の統計学DsPlaygroundの販促バナー_G検定
青の統計学DsPlaygroundの販促バナー_数学入門
大学生向けのG検定の攻略記事のサムネイル

Youtube

Udemy

バナー広告

Ds Playground

青の統計学|X

Update Contents

決定係数について使い方と注意点を丁寧に解説する
【R^2】決定係数をわかりやすく説明|python
10/26/2025
ポアソン過程を解説する記事【青の統計学】
【統計学】ポアソン分布についてわかりやすく解説
10/26/2025
歪度と尖度をわかりやすく解説【青の統計学】
【統計検定2級】歪度と尖度をわかりやすく解説|python
10/26/2025
【第2弾】統計検定準1級のチートシート|最短合格への道
【統計検定2級で最も厄介(主観)】分散分析を解説します②
10/26/2025
【統計検定2級で最も手強い(主観)】分散分析について解説します①
【統計検定2級で最も手強い(主観)】分散分析について解説します①
10/26/2025
不偏性について正しく理解する記事
不偏性と不偏分散についてわかりやすく解説
10/26/2025
ARモデルについてわかりやすく解説する記事
【時系列】ARモデルをわかりやすく解説|Yule-Walker法や最尤法も
10/26/2025
固定効果とランダム効果について比較する
【例題つき】固定効果推定と固定効果モデルについてわかりやすく解説|ランダム効果
10/26/2025
ネイマン配分による分散最小化についてのわかりやすい解説
層化抽出法の比例配分とネイマン配分をわかりやすく解説【統計検定準一級】
10/26/2025
回帰診断法についてのわかりやすい解説
【統計検定準一級】回帰診断法とは?|残差プロットとleverageをわかりやすく解説
10/26/2025

New Contents

【超入門】統計学とは?文系でもわかる『データを武器にする』ための第一歩
【超入門】統計学とは?文系でもわかる『データを武器にする』ための第一歩
08/07/2025
ローレンツ曲線・ジニ係数・パレート分布をまとめて理解|不平等を数学で捉える
ローレンツ曲線・ジニ係数・パレート分布をまとめて理解|不平等を数学で捉える
07/15/2025
【カイ2乗検定】独立性検定と適合度検定についてわかりやすく解説
【カイ2乗検定】独立性検定と適合度検定についてわかりやすく解説
06/23/2025
中心極限定理についてわかりやすく解説|大数の法則との違い
中心極限定理についてわかりやすく解説|大数の法則との違い
06/07/2025
大学生向けのG検定の攻略記事のサムネイル
【体験談】G検定は大学生でも受かる?合格率、難易度、試験範囲を徹底解説
05/17/2025
スペクトラルクラスタリングとは?非線形データの分類
スペクトラルクラスタリングとは?非線形データの分類
03/18/2025
DBSCANとは?密度ベースのクラスタリング
DBSCANとは?密度ベースのクラスタリングを解説
03/16/2025
確率密度関数とは?確率質量関数との違いも解説
確率密度関数とは?確率質量関数との違いも解説
02/25/2025
効果量とは?サンプルサイズ設計を実務で使うには
効果量とは?サンプルサイズ設計を実務で使うには
02/03/2025
統計的なサンプルサイズ設計の手引き
サンプルサイズ設計のガイド:基礎理論と実践をわかりやすく
01/10/2025

Tag Cloud

AIC F統計量 GBDT GLM K-means法 KL divergence MCMC法 MSE PCA p値 ridge回帰 t検定 カイ2乗分布 ガンマ分布 ポアソン分布 マルコフ連鎖 モーメント法 ラグランジュの未定乗数法 ランダムウォーク ランダムフォレスト ロジスティック回帰 一様分布 不偏性 中心極限定理 二項分布 信頼区間 傾向スコア 再生性 分散分析 回帰分析 固定効果 多重共線性 大数の法則 尤度関数 層化抽出法 幾何分布 指数分布 最小二乗法 最尤法 標準偏差 標準誤差 正規分布 決定木 相関係数 統計検定対策

Recent

決定係数について使い方と注意点を丁寧に解説する
【R^2】決定係数をわかりやすく説明|python
10/26/2025
ポアソン過程を解説する記事【青の統計学】
【統計学】ポアソン分布についてわかりやすく解説
10/26/2025
歪度と尖度をわかりやすく解説【青の統計学】
【統計検定2級】歪度と尖度をわかりやすく解説|python
10/26/2025
【第2弾】統計検定準1級のチートシート|最短合格への道
【統計検定2級で最も厄介(主観)】分散分析を解説します②
10/26/2025
【統計検定2級で最も手強い(主観)】分散分析について解説します①
【統計検定2級で最も手強い(主観)】分散分析について解説します①
10/26/2025
不偏性について正しく理解する記事
不偏性と不偏分散についてわかりやすく解説
10/26/2025
ARモデルについてわかりやすく解説する記事
【時系列】ARモデルをわかりやすく解説|Yule-Walker法や最尤法も
10/26/2025
固定効果とランダム効果について比較する
【例題つき】固定効果推定と固定効果モデルについてわかりやすく解説|ランダム効果
10/26/2025
ネイマン配分による分散最小化についてのわかりやすい解説
層化抽出法の比例配分とネイマン配分をわかりやすく解説【統計検定準一級】
10/26/2025
回帰診断法についてのわかりやすい解説
【統計検定準一級】回帰診断法とは?|残差プロットとleverageをわかりやすく解説
10/26/2025

サイトマップはこちら

青の統計学|Follow Me!

青の統計学DsPlaygroundの販促バナー_統計検定2級
青の統計学DsPlaygroundの販促バナー_G検定

チートシート

バナー広告


バナー広告

バナー広告
バナー広告
バナー広告

シミュレーション

サンプルサイズ設計ツールのサムネイル

問題演習

統計検定2級問題演習へのリンク
  • 統計学
  • 機械学習
  • 統計検定対策
  • マーケティング
  • DS Playground
  • 資料

Copyright © 青の統計学 All Rights Reserved.

Powered by WordPress with Lightning Theme & VK All in One Expansion Unit

MENU

  • 統計学
    • 推定・検定
    • ベイズ統計学
    • 時系列解析
    • 計量経済学
    • 医薬・生物統計
  • 機械学習
    • 教師あり学習
    • 教師なし学習
    • Python
    • 深層学習
    • 自然言語処理
  • 統計検定対策
  • マーケティング
    • データ分析
    • 因果推論
  • DS Playground
  • 資料
PAGE TOP