コンテンツへスキップ ナビゲーションに移動

青の統計学

  • 統計学
    • 推定・検定
    • ベイズ統計学
    • 時系列解析
    • 計量経済学
    • 医薬・生物統計
  • 機械学習
    • 教師あり学習
    • 教師なし学習
    • Python
    • 深層学習
    • 自然言語処理
  • 統計検定対策
  • マーケティング
    • データ分析
    • 因果推論
  • DS Playground
  • 資料

統計学応用

  1. HOME
  2. 統計学
  3. 統計学応用
KL情報量の成り立ちと使い方を理解する
07/11/2024 / 最終更新日時 : 11/01/2025 Blue 統計学

相互情報量の定義とその重要性をわかりやすく解説 | KLダイバージェンス

相互情報量とは何か?この記事では、情報理論の重要概念である相互情報量の定義と性質を、エントロピーやKLダイバージェンスとの関係からわかりやすく解説。機械学習での活用法(変数選択など)も紹介します。

MCMC法についてわかりやすく解説する
01/13/2024 / 最終更新日時 : 10/26/2025 Blue 統計学

【完全ガイド】MCMC法についてわかりやすく解説|ベイズ推定

MCMC法|Markov Chain Monte Carlo法 今回は、ベイズ理論を使ったパラメータ推定手法であるMCMC法(Markov Chain Monte Carlo法 マルコフ連鎖モンテカルロ法)について解説い […]

【AICで使う】KL divergence(カルバック-ライブラー情報量)をわかりやすく解説|python
12/21/2023 / 最終更新日時 : 10/26/2025 Blue 統計学

【AICで使う】KL divergence(カルバック-ライブラー情報量)をわかりやすく解説|python

こんにちは、今回はKL divergenceを解説します。 KL divergenceは、2つの確率分布間の相違を測定するために使用され、NLPにおける文書や単語の分布を比較する際に役立ちます。 レベル感としては、統計検 […]

分散不均一についての記事【青の統計学】
04/22/2023 / 最終更新日時 : 11/08/2025 Blue 統計学

【統計学】分散不均一だと何が問題なのか|不偏性とガウスマルコフ性について

統計学の「分散不均一性」とは何か、なぜ問題となるのかを分かりやすく解説します。回帰分析(OLS)における「不偏性」や「ガウス・マルコフの定理」との関係性、分散不均一が推定に与える影響までを学びたい方におすすめです。

有限母集団修正についての手引き
02/14/2023 / 最終更新日時 : 10/26/2025 Blue 統計学

【統計検定】有限母集団修正についてわかりやすく解説|無限母集団との違い

有限母集団修正(Finite Population Correction, FPC) 有限母集団修正とは、有限母集団からの標本抽出に関連するバイアスを補正するための手法です。 まず、モチベーションから確認していきましょう […]

【統計検定】フィッシャー情報量とクラメール・ラオの不等式について解説|python
01/08/2023 / 最終更新日時 : 10/26/2025 Blue 統計学

【統計検定】フィッシャー情報量とクラメール・ラオの不等式について解説|python

こんにちは、青の統計学です。 今回は、正規分布を例に取って、フィッシャー情報量とクラメール・ラオの不等式について深掘りできればと思います。 統計検定準一級の試験範囲にもなっておりますので、この機会に是非理解していきましょ […]

多重共線性について数学的背景から解説する
01/03/2023 / 最終更新日時 : 10/26/2025 Blue 統計学

【論文解説】多重共線性は回帰分析にどのような影響を与えるのか

こんにちは、青の統計学です。 今回は、多重共線性への理解を深め、対処などを考察するために論文を読んでみました。 多変量解析をするとなると、大抵はマルチコ(多重共線性)の壁にあたります。 そこで正確な理解をした方が良いと感 […]

【確率分布の特徴を知りたい】モーメント法をわかりやすく解説
12/02/2022 / 最終更新日時 : 11/07/2025 Blue 統計学

【確率分布の特徴を知りたい】モーメント法をわかりやすく解説

モーメント法とは?確率分布の平均や分散などの特徴を捉える「モーメント」を使い、パラメータを推定する仕組みを数学的背景から解説。統計検定準1級対策にも最適です。

マルコフ連鎖についてわかりやすく解説。
07/16/2022 / 最終更新日時 : 11/08/2025 Blue 統計学

マルコフ連鎖をわかりやすく解説【MCMC法への応用】

マルコフ連鎖の基本原理(マルコフ性・推移確率行列)と定常分布についてわかりやすく解説。さらに、ベイズ統計学で重要なMCMC法(マルコフ連鎖モンテカルロ法)への応用として、MH法やギブスサンプリングとの関係性もPythonコード例と共に紹介します。

モーメント母関数の基礎をわかりやすく解説【青の統計学】
06/30/2022 / 最終更新日時 : 10/26/2025 Blue 統計学

【期待値の応用】モーメント母関数(積率母関数)について

統計検定準一級には、積率母関数についての問題があります。 マクローリン展開や合成関数の微分の知識が必要なことから、避けられがちですが、使う分には便利なものです。 今回は、モーメント法と積率母関数について解説します。 統計 […]

ガウスマルコフの定理をわかりやすく解説する記事
06/24/2022 / 最終更新日時 : 10/26/2025 Blue 統計学

【MSEを最小化】ガウス・マルコフの定理と最良線形不偏推定量について

回帰分析等で算出した推定量を評価するとき、どのような指標があるでしょうか。 これまでは、一致性や不偏性を取り上げてきました。簡単に復習しましょう。 一致性(consistency):サンプル数を∞に近づけると、推定量はパ […]

マルチンゲールについての数学的背景を解説
06/20/2022 / 最終更新日時 : 10/26/2025 Blue 統計学

【統計検定準一級】ランダムウォークとマルチンゲールの話。

こんにちは、青の統計学です。 統計検定準一級では、「この確立過程Sは、マルチンゲールかどうか?」という問題が出ることがあります。 マルコフ性と並んで登場する「マルチンゲール」に、とっつきにくさを感じた方も多いと思います。 […]

【F値とは】分散分析による検定の多重性について|統計検定準1級
06/15/2022 / 最終更新日時 : 10/26/2025 Blue 統計学

【F値とは】分散分析による検定の多重性について|統計検定準1級

統計検定準一級では、2級同様「分散分析」の内容が出てきます。 今回は、前回と視点を変えた「検定の多重性」について解説します。 例題を通して理解していきましょう。 *確実に理解するために、ある程度時間をかけてみましょう。 […]

多重共線性を正しく理解する
06/13/2022 / 最終更新日時 : 10/26/2025 Blue 統計学

【完全攻略】多重共線性をわかりやすく解説

多重共線性(Multicollinearity)とは 重回帰分析を勉強していると、最小二乗法の仮定の一つに「多重共線性がないこと」と見たことがあると思います。 冪乗項や交互作用項などを説明変数に入れて必然的に生じる多重共 […]

一般化線形混合モデルについて基礎から理解する
06/08/2022 / 最終更新日時 : 10/26/2025 Blue 統計学

【GLMM】一般化線形混合モデルについてわかりやすく解説

1. 一般化線形モデル (GLM) と固定効果モデル まずは、前提知識を確認しましょう。 2. 一般化線形混合モデル (GLMM) の位置づけと特長 「GLMM = 一般化線形モデル + 混合効果」GLMM は、一般化線 […]

ブートストラップ法についてわかりやすく解説する
05/31/2022 / 最終更新日時 : 10/26/2025 Blue 統計学

ブートストラップ法についてわかりやすく解説|R

ブートストラップ法(bootstrap method) ブートストラップ法とは、限られた標本データから母集団の特性を推定するための統計的リサンプリング手法です。 特徴は、データの復元抽出による多数のサンプルセットの生成に […]

ポアソン過程を解説する記事【青の統計学】
05/30/2022 / 最終更新日時 : 10/26/2025 Blue 統計学

【統計検定】ポアソン過程をわかりやすく解説|待ち行列理論

こんにちは、青の統計学です。 今回は統計検定準一級から登場する確立過程の一つ「ポアソン過程」について解説いたします。 このコンテンツに全て詰まっているのでブックマーク推奨です! 関わりの深い生存時間解析は、こちらで学習で […]

尤度比検定の使い方を具体例を通して理解する
05/27/2022 / 最終更新日時 : 11/04/2025 Blue 統計学

尤度比検定とは?わかりやすく解説|カイ2乗分布との関わり

汎用性の高い「尤度比検定」をわかりやすく解説。2つの統計モデル(完全モデル・縮小モデル)の適合度を比較する手法、検定統計量とカイ2乗分布の関係、GLMでのPython実装例までを紹介します。

回帰診断法についてのわかりやすい解説
05/06/2022 / 最終更新日時 : 10/26/2025 Blue 統計学

【統計検定準一級】回帰診断法とは?|残差プロットとleverageをわかりやすく解説

回帰診断法 回帰診断法は、回帰分析において誤差項の仮定が成立しているかどうかを評価する手法です。 仮定について詳しく深掘りたい方は、こちらを先に見た方がいいかもしれないです …で、これらの仮定を確認するために […]

ネイマン配分による分散最小化についてのわかりやすい解説
05/04/2022 / 最終更新日時 : 10/26/2025 Blue 統計学

層化抽出法の比例配分とネイマン配分をわかりやすく解説【統計検定準一級】

層化抽出法 層化抽出法は、母集団を互いに排反な部分集合(層)に分割し、各層から独立に標本を抽出する方法です。 統計検定二級では、調査手法の一つとして他の方法と比較できているかを問われていましたが、準一級では具体例を通して […]

固定効果とランダム効果について比較する
05/04/2022 / 最終更新日時 : 10/26/2025 Blue 統計学

【例題つき】固定効果推定と固定効果モデルについてわかりやすく解説|ランダム効果

よりお手軽に学習したい方は以下の聞き流し動画から聞いてみるのがおすすめです。 固定効果(fixed effect)とは まず、固定効果推定を行うのは「対象を複数時点で観察する」場合です。社会科学の分野では、パネルデータ分 […]

人気記事

統計検定2級の完全ガイド
青の統計学DsPlaygroundの販促バナー_統計検定2級
統計検定3級の徹底攻略
青の統計学DsPlaygroundの販促バナー_G検定
青の統計学DsPlaygroundの販促バナー_数学入門
大学生向けのG検定の攻略記事のサムネイル

Youtube

Udemy

バナー広告

Ds Playground

青の統計学|X

Update Contents

一般化線形モデルについてのわかりやすい解説
【GLM】一般化線形モデルをわかりやすく解説|ポアソン回帰
11/09/2025
階層型クラスタリングとデンドログラムを解説|k-means法との比較
階層型クラスタリングとデンドログラムを解説|k-means法との比較
11/09/2025
差の差分析(DID)をわかりやすく解説:多期間DIDとサンプルサイズ計算まで
差の差分析(DID)をわかりやすく解説:多期間DIDとサンプルサイズ計算まで
11/09/2025
シンプソンのパラドクスを解説
シンプソンズのパラドクスとは?──「部分」と「全体」で逆転する統計の落とし穴
11/09/2025
ガウス過程回帰の仕組みと実務での応用をわかりやすく解説|ノンパラメトリック機械学習
ガウス過程回帰の仕組みと実務での応用をわかりやすく解説|ノンパラメトリック機械学習
11/09/2025
マルコフ連鎖についてわかりやすく解説。
マルコフ連鎖をわかりやすく解説【MCMC法への応用】
11/08/2025
【完全ガイド】k-means法とは?周辺のクラスタリング手法と比較
【完全ガイド】k-means法とは?周辺のクラスタリング手法と比較
11/08/2025
対数正規分布とは?ビジネスで使える便利な確率分布
対数正規分布とは?ビジネスで使える便利な確率分布
11/08/2025
正規分布をわかりやすく解説【青の統計学】
正規分布とは?図解と合わせわかりやすく解説
11/08/2025
ラスパイレス指数とパーシェ指数を比較
ラスパイレス指数とパーシェ指数をわかりやすく解説!計算方法と使い分け【統計検定】
11/08/2025

New Contents

【超入門】統計学とは?文系でもわかる『データを武器にする』ための第一歩
【超入門】統計学とは?文系でもわかる『データを武器にする』ための第一歩
08/07/2025
ローレンツ曲線・ジニ係数・パレート分布をまとめて理解|不平等を数学で捉える
ローレンツ曲線・ジニ係数・パレート分布をまとめて理解|不平等を数学で捉える
07/15/2025
【カイ2乗検定】独立性検定と適合度検定についてわかりやすく解説
【カイ2乗検定】独立性検定と適合度検定についてわかりやすく解説
06/23/2025
中心極限定理についてわかりやすく解説|大数の法則との違い
中心極限定理についてわかりやすく解説|大数の法則との違い
06/07/2025
大学生向けのG検定の攻略記事のサムネイル
【体験談】G検定は大学生でも受かる?合格率、難易度、試験範囲を徹底解説
05/17/2025
スペクトラルクラスタリングとは?非線形データの分類
スペクトラルクラスタリングとは?非線形データの分類
03/18/2025
DBSCANとは?密度ベースのクラスタリング
DBSCANとは?密度ベースのクラスタリングを解説
03/16/2025
確率密度関数とは?確率質量関数との違いも解説
確率密度関数とは?確率質量関数との違いも解説
02/25/2025
効果量とは?サンプルサイズ設計を実務で使うには
効果量とは?サンプルサイズ設計を実務で使うには
02/03/2025
統計的なサンプルサイズ設計の手引き
サンプルサイズ設計のガイド:基礎理論と実践をわかりやすく
01/10/2025

Tag Cloud

AIC DID F統計量 GBDT GLM K-means法 KL divergence MCMC法 MSE PCA p値 ridge回帰 t検定 カイ2乗分布 ガンマ分布 ポアソン分布 マルコフ連鎖 モーメント法 ラグランジュの未定乗数法 ランダムウォーク ランダムフォレスト ロジスティック回帰 一様分布 不偏性 中心極限定理 二項分布 信頼区間 傾向スコア 再生性 分散分析 回帰分析 固定効果 多重共線性 大数の法則 尤度関数 層化抽出法 幾何分布 指数分布 最尤法 標準偏差 標準誤差 正規分布 決定木 相関係数 統計検定対策

Recent

一般化線形モデルについてのわかりやすい解説
【GLM】一般化線形モデルをわかりやすく解説|ポアソン回帰
11/09/2025
階層型クラスタリングとデンドログラムを解説|k-means法との比較
階層型クラスタリングとデンドログラムを解説|k-means法との比較
11/09/2025
差の差分析(DID)をわかりやすく解説:多期間DIDとサンプルサイズ計算まで
差の差分析(DID)をわかりやすく解説:多期間DIDとサンプルサイズ計算まで
11/09/2025
シンプソンのパラドクスを解説
シンプソンズのパラドクスとは?──「部分」と「全体」で逆転する統計の落とし穴
11/09/2025
ガウス過程回帰の仕組みと実務での応用をわかりやすく解説|ノンパラメトリック機械学習
ガウス過程回帰の仕組みと実務での応用をわかりやすく解説|ノンパラメトリック機械学習
11/09/2025
マルコフ連鎖についてわかりやすく解説。
マルコフ連鎖をわかりやすく解説【MCMC法への応用】
11/08/2025
【完全ガイド】k-means法とは?周辺のクラスタリング手法と比較
【完全ガイド】k-means法とは?周辺のクラスタリング手法と比較
11/08/2025
対数正規分布とは?ビジネスで使える便利な確率分布
対数正規分布とは?ビジネスで使える便利な確率分布
11/08/2025
正規分布をわかりやすく解説【青の統計学】
正規分布とは?図解と合わせわかりやすく解説
11/08/2025
ラスパイレス指数とパーシェ指数を比較
ラスパイレス指数とパーシェ指数をわかりやすく解説!計算方法と使い分け【統計検定】
11/08/2025

サイトマップはこちら

青の統計学|Follow Me!

青の統計学DsPlaygroundの販促バナー_統計検定2級
青の統計学DsPlaygroundの販促バナー_G検定

チートシート

バナー広告


バナー広告

バナー広告
バナー広告
バナー広告

シミュレーション

サンプルサイズ設計ツールのサムネイル

問題演習

統計検定2級問題演習へのリンク
  • 統計学
  • 機械学習
  • 統計検定対策
  • マーケティング
  • DS Playground
  • 資料

Copyright © 青の統計学 All Rights Reserved.

Powered by WordPress with Lightning Theme & VK All in One Expansion Unit

MENU

  • 統計学
    • 推定・検定
    • ベイズ統計学
    • 時系列解析
    • 計量経済学
    • 医薬・生物統計
  • 機械学習
    • 教師あり学習
    • 教師なし学習
    • Python
    • 深層学習
    • 自然言語処理
  • 統計検定対策
  • マーケティング
    • データ分析
    • 因果推論
  • DS Playground
  • 資料
PAGE TOP