06/08/2022 / 最終更新日時 : 11/03/2024 bluest ベイズ 【GLMM】一般化線形混合モデルについて解説|R こんにちは、青の統計学です。 GLMMを学ぶ前には、固定効果とランダム効果(変量モデル)、そしてGLM(一般化線形モデル)を理解しておく必要があります。 まだ理解が足りてない方には、まず先に以下のコンテンツをご覧ください […]
06/03/2022 / 最終更新日時 : 09/16/2024 bluest Python ロジスティック回帰についてわかりやすく解説【二項分布】【統計検定】 ロジット関数とロジスティック関数 こんにちは、青の統計学です、 今回は、分類タスクの王道「ロジスティック回帰」について解説していきます。 しっかり復習したい方は、以下の記事をご覧ください。 基本は、線形回帰の拡張でしたね […]
05/27/2022 / 最終更新日時 : 11/16/2024 bluest Python 【汎用性抜群】尤度比検定をわかりやすく解説します 尤度比検定(likelihood ratio test) 尤度比検定とは、汎用性の高い統計モデルの検定です。 専門的な用語抜きに説明すると、尤度比検定とは二つのモデルのうち、観測データをよりよく説明するのはどちらだろうか […]
05/24/2022 / 最終更新日時 : 09/16/2024 bluest Python 【GLM】一般化線形モデルをわかりやすく解説|ポアソン回帰 一般化線形モデル(generalized liner model) 今回はGLMと呼ばれる「一般化線形モデル(generalized liner model)」を解説します。 よく似た名前として、分散分析や共分散分析など […]