02/11/2024 / 最終更新日時 : 03/25/2024 bluest ベイズ 【因果推論】uplift modeling(アップリフトモデリング)について こんにちは、青の統計学です。 今回は、アップリフトモデリングについて解説していきます。 これはマーケティングや広告などの分野で、特定のアクション(例えば、プロモーションやキャンペーン)が個々の顧客やユーザーに与える影響を […]
03/23/2023 / 最終更新日時 : 11/19/2023 bluest Python 【SHAP】スタッキング(stacking)で特徴量の解釈はできるのか|pythonアンサンブル学習 こんにちは、青の統計学です。 機械学習アルゴリズムの精度向上において、アンサンブル学習は非常に重要な役割を果たしています。 アンサンブル学習とは、複数の学習アルゴリズムを組み合わせることで、予測精度を向上させる手法です。 […]
12/18/2022 / 最終更新日時 : 05/01/2023 bluest Python 【ランダムフォレスト】ブートストラップ法を決定木に応用|python 今回は、決定木に対するバギングの拡張系アルゴリズムである「ランダムフォレスト(random forest)」を解説いたします。 アンサンブル手法のひとつである、バギングについても解説します。 決定木について復習したい方は […]
12/16/2022 / 最終更新日時 : 09/09/2023 bluest Python 【多変量解析】ROC曲線とAUCによる判別分析|python 機械学習の問題は回帰問題と分類問題に大別されます。 そして、分類問題の指標でよく扱われるかつ、不均衡問題で威力を発揮する「ROC曲線」と「AUC」について今回は解説していきます。 統計検定準一級の範囲にもしっかり入ってお […]