コンテンツへスキップ ナビゲーションに移動

青の統計学

  • 統計学
    • 推定・検定
    • ベイズ統計学
    • 時系列解析
    • 計量経済学
    • 医薬・生物統計
  • 機械学習
    • 教師あり学習
    • 教師なし学習
    • Python
    • 深層学習
    • 自然言語処理
  • 統計検定対策
  • マーケティング
    • データ分析
    • 因果推論
  • DS Playground
  • 資料

数理最適化

  1. HOME
  2. 機械学習
  3. 数理最適化
ラグランジュ未定乗数法を数学的背景から理解する
12/23/2022 / 最終更新日時 : 11/02/2025 Blue 数理最適化

【例題付き】ラグランジュ未定乗数法の基本と応用をわかりやすく解説

ラグランジュ未定乗数法の基本をわかりやすく解説。制約付き最適化問題とは何か、多次元での計算手順、ヘッセ行列による二次条件まで。経済学の効用最大化問題を例題に、具体的な解き方をステップバイステップで学びます。

人気記事

統計検定2級の完全ガイド
青の統計学DsPlaygroundの販促バナー_統計検定2級
統計検定3級の徹底攻略
青の統計学DsPlaygroundの販促バナー_G検定
青の統計学DsPlaygroundの販促バナー_数学入門
大学生向けのG検定の攻略記事のサムネイル

Youtube

Udemy

バナー広告

Ds Playground

青の統計学|X

Update Contents

ベイズの定理とベイズ統計学についてわかりやすく解説する
ベイズ推定をわかりやすく解説|事後分布から推定量を導く方法
11/06/2025
モーメント母関数のチートシートに関するサムネイル
【統計検定】確率分布のモーメント(積率)母関数完全ガイド|導出チートシート
11/06/2025
VAEについてわかりやすく解説する
【深層生成モデル】VAEの仕組みをわかりやすく解説|ベイズ統計
11/06/2025
多変量正規分布についてわかりやすく解説する
多変量正規分布の確率密度関数と主な性質を解説|機械学習・統計学の基礎
11/06/2025
ロジスティク回帰について数学的背景も踏まえて解説
ロジスティック回帰についてわかりやすく解説【二項分布】【統計検定】
11/04/2025
尤度比検定の使い方を具体例を通して理解する
尤度比検定とは?わかりやすく解説|カイ2乗分布との関わり
11/04/2025
オッズとオッズ比を理解する
【ベイズ因子】オッズ比の使われ方を紹介します
11/04/2025
二項分布を基礎から応用まで解説
【完全版】二項分布をわかりやすく説明|統計学
11/03/2025
ロジスティック分布とは?シグモイド関数との関わりも解説
ロジスティック分布とは?シグモイド関数との関わりも解説
11/03/2025
不偏性について正しく理解する記事
不偏性と不偏分散についてわかりやすく解説
11/02/2025

New Contents

【超入門】統計学とは?文系でもわかる『データを武器にする』ための第一歩
【超入門】統計学とは?文系でもわかる『データを武器にする』ための第一歩
08/07/2025
ローレンツ曲線・ジニ係数・パレート分布をまとめて理解|不平等を数学で捉える
ローレンツ曲線・ジニ係数・パレート分布をまとめて理解|不平等を数学で捉える
07/15/2025
【カイ2乗検定】独立性検定と適合度検定についてわかりやすく解説
【カイ2乗検定】独立性検定と適合度検定についてわかりやすく解説
06/23/2025
中心極限定理についてわかりやすく解説|大数の法則との違い
中心極限定理についてわかりやすく解説|大数の法則との違い
06/07/2025
大学生向けのG検定の攻略記事のサムネイル
【体験談】G検定は大学生でも受かる?合格率、難易度、試験範囲を徹底解説
05/17/2025
スペクトラルクラスタリングとは?非線形データの分類
スペクトラルクラスタリングとは?非線形データの分類
03/18/2025
DBSCANとは?密度ベースのクラスタリング
DBSCANとは?密度ベースのクラスタリングを解説
03/16/2025
確率密度関数とは?確率質量関数との違いも解説
確率密度関数とは?確率質量関数との違いも解説
02/25/2025
効果量とは?サンプルサイズ設計を実務で使うには
効果量とは?サンプルサイズ設計を実務で使うには
02/03/2025
統計的なサンプルサイズ設計の手引き
サンプルサイズ設計のガイド:基礎理論と実践をわかりやすく
01/10/2025

Tag Cloud

AIC F統計量 GBDT GLM K-means法 KL divergence MCMC法 MSE PCA p値 ridge回帰 t検定 カイ2乗分布 ガンマ分布 ポアソン分布 マルコフ連鎖 モーメント法 ラグランジュの未定乗数法 ランダムウォーク ランダムフォレスト ロジスティック回帰 一様分布 不偏性 中心極限定理 二項分布 信頼区間 傾向スコア 再生性 分散分析 回帰分析 固定効果 多重共線性 大数の法則 尤度関数 層化抽出法 幾何分布 指数分布 最小二乗法 最尤法 標準偏差 標準誤差 正規分布 決定木 相関係数 統計検定対策

Recent

ベイズの定理とベイズ統計学についてわかりやすく解説する
ベイズ推定をわかりやすく解説|事後分布から推定量を導く方法
11/06/2025
モーメント母関数のチートシートに関するサムネイル
【統計検定】確率分布のモーメント(積率)母関数完全ガイド|導出チートシート
11/06/2025
VAEについてわかりやすく解説する
【深層生成モデル】VAEの仕組みをわかりやすく解説|ベイズ統計
11/06/2025
多変量正規分布についてわかりやすく解説する
多変量正規分布の確率密度関数と主な性質を解説|機械学習・統計学の基礎
11/06/2025
ロジスティク回帰について数学的背景も踏まえて解説
ロジスティック回帰についてわかりやすく解説【二項分布】【統計検定】
11/04/2025
尤度比検定の使い方を具体例を通して理解する
尤度比検定とは?わかりやすく解説|カイ2乗分布との関わり
11/04/2025
オッズとオッズ比を理解する
【ベイズ因子】オッズ比の使われ方を紹介します
11/04/2025
二項分布を基礎から応用まで解説
【完全版】二項分布をわかりやすく説明|統計学
11/03/2025
ロジスティック分布とは?シグモイド関数との関わりも解説
ロジスティック分布とは?シグモイド関数との関わりも解説
11/03/2025
不偏性について正しく理解する記事
不偏性と不偏分散についてわかりやすく解説
11/02/2025

サイトマップはこちら

青の統計学|Follow Me!

青の統計学DsPlaygroundの販促バナー_統計検定2級
青の統計学DsPlaygroundの販促バナー_G検定

チートシート

バナー広告


バナー広告

バナー広告
バナー広告
バナー広告

シミュレーション

サンプルサイズ設計ツールのサムネイル

問題演習

統計検定2級問題演習へのリンク
  • 統計学
  • 機械学習
  • 統計検定対策
  • マーケティング
  • DS Playground
  • 資料

Copyright © 青の統計学 All Rights Reserved.

Powered by WordPress with Lightning Theme & VK All in One Expansion Unit

MENU

  • 統計学
    • 推定・検定
    • ベイズ統計学
    • 時系列解析
    • 計量経済学
    • 医薬・生物統計
  • 機械学習
    • 教師あり学習
    • 教師なし学習
    • Python
    • 深層学習
    • 自然言語処理
  • 統計検定対策
  • マーケティング
    • データ分析
    • 因果推論
  • DS Playground
  • 資料
PAGE TOP