コンテンツへスキップ ナビゲーションに移動

青の統計学

  • 統計学
    • 統計学基礎
    • ベイズ
  • 機械学習
  • 統計検定対策
  • 大学の試験対策
  • マーケティング
  • DS Playground
  • 資料

2023年3月

  1. HOME
  2. 2023年3月
03/30/2023 / 最終更新日時 : 11/19/2023 bluest Python

【python】カーネルSVMとは?kernel関数を利用した非線形データの判別問題に挑戦|機械学習

こんにちは、青の統計学です。 今回は、判別タスクに関わる解決手法「カーネルSVM」をご紹介します。 判別タスクは、決定木やロジスティック回帰、線型SVM、k近傍法などたくさんあります。 カーネルSVMの特徴は、非線形デー […]

03/23/2023 / 最終更新日時 : 11/19/2023 bluest Python

【SHAP】スタッキング(stacking)で特徴量の解釈はできるのか|pythonアンサンブル学習

こんにちは、青の統計学です。 機械学習アルゴリズムの精度向上において、アンサンブル学習は非常に重要な役割を果たしています。 アンサンブル学習とは、複数の学習アルゴリズムを組み合わせることで、予測精度を向上させる手法です。 […]

03/18/2023 / 最終更新日時 : 04/22/2024 bluest Python

【python】活性化関数の完全ガイド|特徴と効果的な選び方について|勾配消失問題

こんにちは、青の統計学です。 ディープラーニングは、近年の技術革新において大きなインパクトをもたらしており、画像認識や自然言語処理など、多くの分野で広く利用されています。 このコンテンツでは、ディープラーニングの中心的な […]

畳み込みニューラルネットワークの解説
03/17/2023 / 最終更新日時 : 01/12/2025 bluest Python

【python】畳み込みニューラルネットワークによる画像判別プログラムの開発

畳み込みニューラルネットワーク(Convolutional Neural Network, CNN)は、画像認識や物体検出などのコンピュータビジョンタスクに広く使用されるディープラーニングの一種です。 CNNは、局所的な […]

leave one outについてわかりやすく解説する
03/10/2023 / 最終更新日時 : 10/30/2024 bluest Python

【Leave-one-out】データ量が少ない時に使うクロスバリデーション|python

こんにちは、青の統計学です。 今回はデータ量が少ない時に有効な交差検証法の一種、Leave-one-outCVを紹介いたします。 Leave one out CV Leave-One-Out Cross-Validati […]

サムネイル
03/05/2023 / 最終更新日時 : 11/17/2023 bluest Python

【python】主成分分析(+回帰)の仕組みとコード例|教師なし学習

こんにちは、青の統計学です。 今回は教師なし学習の一つ「主成分分析」について解説いたします。 以下の記事よりも数学的背景を重めに取り扱っております。 【共線性解決!?】pythonで主成分分析(PCA)をやってみた 主成 […]

人気記事

統計検定2級の完全ガイド
統計検定3級の徹底攻略

Udemy

バナー広告

新サービス

青の統計学|X

Update Contents

統計検定2級の完全ガイド
統計検定2級の難易度と範囲を徹底解説【2025年最新版】
05/03/2025
自己組織化マップとは?データの視覚的探索と次元削減の手法
自己組織化マップとは?データの視覚的探索と次元削減の手法
03/18/2025
階層型クラスタリング徹底比較|ウォード法・最短距離法などの使い分け
階層型クラスタリング徹底比較|ウォード法・最短距離法などの使い分け
03/18/2025
k-medoidsとは?k-meansとの違いをわかりやすく解説
k-medoidsとは?k-meansとの違いをわかりやすく解説
03/18/2025
スペクトラルクラスタリングとは?非線形データの分類
スペクトラルクラスタリングとは?非線形データの分類
03/18/2025
DBSCANとは?密度ベースのクラスタリング
DBSCANとは?密度ベースのクラスタリングを解説
03/16/2025
【完全ガイド】k-means法とは?周辺のクラスタリング手法と比較
【完全ガイド】k-means法とは?周辺のクラスタリング手法と比較
03/15/2025
確率密度関数とは?確率質量関数との違いも解説
確率密度関数とは?確率質量関数との違いも解説
03/15/2025
多重共線性を正しく理解する
【完全攻略】多重共線性をわかりやすく解説
02/20/2025
パレートの法則についてわかりやすく解説
パレートの法則についてわかりやすく解説
02/12/2025

New Contents

スペクトラルクラスタリングとは?非線形データの分類
スペクトラルクラスタリングとは?非線形データの分類
03/18/2025
DBSCANとは?密度ベースのクラスタリング
DBSCANとは?密度ベースのクラスタリングを解説
03/16/2025
確率密度関数とは?確率質量関数との違いも解説
確率密度関数とは?確率質量関数との違いも解説
02/25/2025
効果量とは?サンプルサイズ設計を実務で使うには
効果量とは?サンプルサイズ設計を実務で使うには
02/03/2025
統計的なサンプルサイズ設計の手引き
サンプルサイズ設計のガイド:基礎理論と実践をわかりやすく
01/10/2025
グラフニューラルネットワークの基礎と応用事例
グラフニューラルネットワークの基礎と応用事例
01/08/2025
パレートの法則についてわかりやすく解説
パレートの法則についてわかりやすく解説
01/07/2025
負の二項分布を実験に活かした具体例
負の二項分布をわかりやすく解説
01/04/2025
ベイズ因子をABテストに使ってみる
ベイズ因子とは?──定義と直感的解釈
01/01/2025
マーケティングミックスモデリング(MMM)について理解
【完全版】MMMを課題設定から考える|Google Meridian
12/26/2024

Tag Cloud

AIC F統計量 GBDT GLM K-means法 KL divergence MCMC法 MSE PCA p値 ridge回帰 t検定 カイ2乗分布 ガンマ分布 ブートストラップ法 ポアソン分布 マルコフ連鎖 ラグランジュの未定乗数法 ランダムウォーク ランダムフォレスト ロジスティック回帰 一様分布 不偏性 中心極限定理 二項分布 信頼区間 共分散 再生性 分散分析 回帰分析 固定効果 多重共線性 尤度比検定 尤度関数 層化抽出法 幾何分布 指数分布 最小二乗法 最尤法 標準偏差 標準誤差 正規分布 決定木 深層学習 相関係数

Recent

統計検定2級の完全ガイド
統計検定2級の難易度と範囲を徹底解説【2025年最新版】
05/03/2025
自己組織化マップとは?データの視覚的探索と次元削減の手法
自己組織化マップとは?データの視覚的探索と次元削減の手法
03/18/2025
階層型クラスタリング徹底比較|ウォード法・最短距離法などの使い分け
階層型クラスタリング徹底比較|ウォード法・最短距離法などの使い分け
03/18/2025
k-medoidsとは?k-meansとの違いをわかりやすく解説
k-medoidsとは?k-meansとの違いをわかりやすく解説
03/18/2025
スペクトラルクラスタリングとは?非線形データの分類
スペクトラルクラスタリングとは?非線形データの分類
03/18/2025
DBSCANとは?密度ベースのクラスタリング
DBSCANとは?密度ベースのクラスタリングを解説
03/16/2025
【完全ガイド】k-means法とは?周辺のクラスタリング手法と比較
【完全ガイド】k-means法とは?周辺のクラスタリング手法と比較
03/15/2025
確率密度関数とは?確率質量関数との違いも解説
確率密度関数とは?確率質量関数との違いも解説
03/15/2025
多重共線性を正しく理解する
【完全攻略】多重共線性をわかりやすく解説
02/20/2025
パレートの法則についてわかりやすく解説
パレートの法則についてわかりやすく解説
02/12/2025

サイトマップはこちら

青の統計学|Follow Me!

チートシート

バナー広告


バナー広告

バナー広告
バナー広告
バナー広告
バナー広告

シミュレーション

サンプルサイズ設計ツールのサムネイル

問題演習

統計検定2級問題演習へのリンク
  • 統計学
  • 機械学習
  • 統計検定対策
  • 大学の試験対策
  • マーケティング
  • DS Playground
  • 資料

Copyright © 青の統計学 All Rights Reserved.

Powered by WordPress with Lightning Theme & VK All in One Expansion Unit

MENU

  • 統計学
    • 統計学基礎
    • ベイズ
  • 機械学習
  • 統計検定対策
  • 大学の試験対策
  • マーケティング
  • DS Playground
  • 資料
PAGE TOP