コンテンツへスキップ ナビゲーションに移動

青の統計学

  • 統計学
    • 統計学基礎
    • ベイズ
  • 機械学習
  • 統計検定対策
  • 大学の試験対策
  • マーケティング
  • DS Playground
  • 資料

大学数学

  1. HOME
  2. 大学数学
自己組織化マップとは?データの視覚的探索と次元削減の手法
06/27/2022 / 最終更新日時 : 03/18/2025 Blue Python

自己組織化マップとは?データの視覚的探索と次元削減の手法

自己組織化マップとは? 自己組織化マップ(Self-Organizing Map,SOM)は、高次元のデータを2次元(時には1次元や3次元も)の格子状に配置されたニューロンの集合体に投影することで、データの可視化と理解を […]

主成分分析について数学的背景から解説する
06/22/2022 / 最終更新日時 : 09/11/2024 Blue Python

主成分分析(PCA)をわかりやすく解説【統計検定準一級】|python

主成分分析 青の統計学へようこそ。 今回は、教師なし学習の一つ「主成分分析」について解説いたします。 数学的背景まで掘り下げたコンテンツは以下になります。 【python】主成分分析(+回帰)の仕組みとコード例|教師なし […]

06/15/2022 / 最終更新日時 : 04/27/2024 Blue 大学数学

【線形代数】固有値や固有ベクトルは機械学習にどう使われているのか|主成分分析

こんにちは、青の統計学です。 今回は、前回大好評だった「線形代数がデータサイエンスにどう使われているのかシリーズ」の第二弾です。 大学数学で勉強した固有値や固有ベクトルが一体何の役に立っているのか…対角化で冪 […]

多重共線性を正しく理解する
06/13/2022 / 最終更新日時 : 02/20/2025 Blue 大学数学

【完全攻略】多重共線性をわかりやすく解説

多重共線性(Multicollinearity)とは 重回帰分析を勉強していると、最小二乗法の仮定の一つに「多重共線性がないこと」と見たことがあると思います。 冪乗項や交互作用項などを説明変数に入れて必然的に生じる多重共 […]

シンプソンのパラドクスを解説
06/12/2022 / 最終更新日時 : 01/06/2025 Blue 医薬生物学

シンプソンズのパラドクスとは?──「部分」と「全体」で逆転する統計の落とし穴

「相関関係はあるが、因果関係があるとは限らない」——統計を学ぶ方なら必ず耳にする言葉ですが、「因果はあるのに相関が消えてしまう」という、より厄介な現象も存在します。それがシンプソンズのパラドクス (Simpson’s P […]

一般化線形混合モデルについて基礎から理解する
06/08/2022 / 最終更新日時 : 01/12/2025 Blue マーケティング

【GLMM】一般化線形混合モデルについてわかりやすく解説

1. 一般化線形モデル (GLM) と固定効果モデル まずは、前提知識を確認しましょう。 2. 一般化線形混合モデル (GLMM) の位置づけと特長 「GLMM = 一般化線形モデル + 混合効果」GLMM は、一般化線 […]

正規分布をわかりやすく解説【青の統計学】
06/04/2022 / 最終更新日時 : 02/08/2025 Blue 大学数学

正規分布とは?図解と合わせわかりやすく解説

こんにちは、青の統計学です。 二項分布やポアソン分布のようなカウントデータを扱う離散分布の他に、連続データを扱う連続分布があります。 今回は、連続分布の代表格である「正規分布」について扱います。 確率密度に関する例題とと […]

ブートストラップ法についてわかりやすく解説する
05/31/2022 / 最終更新日時 : 11/26/2024 Blue Python

ブートストラップ法についてわかりやすく解説|R

ブートストラップ法(bootstrap method) ブートストラップ法とは、限られた標本データから母集団の特性を推定するための統計的リサンプリング手法です。 特徴は、データの復元抽出による多数のサンプルセットの生成に […]

トービットモデルについて数学的背景から解説する
05/19/2022 / 最終更新日時 : 09/14/2024 Blue 大学数学

トービットモデルとは?わかりやすく解説【潜在変数】|計量経済学

トービットモデル トービットモデルは、経済学や計量経済学で広く使用される回帰モデルの一種です。 このモデルは、従属変数が一定の値(通常は0)で切断されている状況を扱うためにつくられました。 モデルの基本構造と切断 トービ […]

t検定についてわかりやすく解説【青の統計学】
05/17/2022 / 最終更新日時 : 08/13/2025 Blue マーケティング

【t検定】t統計量(t値)の求め方

t統計量(t value)について t統計量とは、t検定で使う検定統計量のことです。 t統計量は、回帰分析や仮説検定において重要な役割を果たす検定統計量です。特に、回帰係数の統計的有意性を評価する際に用いられます。 統計 […]

ベルマン方程式をわかりやすく解説|動的計画法
05/11/2022 / 最終更新日時 : 08/15/2025 Blue 大学数学

ベルマン方程式をわかりやすく解説|動的計画法

こんにちは、青の統計学です。 今回は、ベルマン方程式についてわかりやすく解説します。 ベルマン方程式とは ベルマン方程式は、「最適性の原理」を数学的に表現したものです。 最適性の原理とは、「ある時点での最適な意思決定は、 […]

分散と標準偏差を基礎から解説する
05/10/2022 / 最終更新日時 : 09/22/2024 Blue Python

【高校数学でわかる】分散と標準偏差をわかりやすく解説|散らばりの指標

分散(variance)と標準偏差(standard deviation) こんにちは、青の統計学です。 今回は、統計の基本である分散と標準偏差について解説していきます。 高校数学でも扱われる内容なので、高度な数学は必要 […]

回帰診断法についてのわかりやすい解説
05/06/2022 / 最終更新日時 : 09/19/2024 Blue Python

【統計検定準一級】回帰診断法とは?|残差プロットとleverageをわかりやすく解説

回帰診断法 回帰診断法は、回帰分析において誤差項の仮定が成立しているかどうかを評価する手法です。 仮定について詳しく深掘りたい方は、こちらを先に見た方がいいかもしれないです …で、これらの仮定を確認するために […]

ネイマン配分による分散最小化についてのわかりやすい解説
05/04/2022 / 最終更新日時 : 09/15/2024 Blue 大学数学

層化抽出法の比例配分とネイマン配分をわかりやすく解説【統計検定準一級】

層化抽出法 層化抽出法は、母集団を互いに排反な部分集合(層)に分割し、各層から独立に標本を抽出する方法です。 統計検定二級では、調査手法の一つとして他の方法と比較できているかを問われていましたが、準一級では具体例を通して […]

05/01/2022 / 最終更新日時 : 09/09/2024 Blue Python

【python】行列式や逆行列は機械学習でどう使われるのか|線形代数の活用方法

大学数学で習う線形代数は、統計学や機械学習ではどのように活用されているのでしょうか? なんとなく説明変数をたくさん書かなくても行ベクトル一つ書いておけば良いから楽、程度に考えているかもしれませんが、実はもっと役に立ってお […]

不偏性について正しく理解する記事
05/01/2022 / 最終更新日時 : 01/13/2025 Blue 大学数学

不偏性と不偏分散についてわかりやすく解説

不偏性(unbiasedness) 不偏分散とは、分散の中でも不偏性を持つ分散のことです。 まずは、不偏性から理解していきましょう。 「不偏性がある」とは、標本平均の期待値が母平均に一致することを指します。 数式で書くと […]

投稿ナビゲーション

  • «
  • 固定ページ 1
  • 固定ページ 2
  • 固定ページ 3

人気記事

統計検定2級の完全ガイド
青の統計学DsPlaygroundの販促バナー_統計検定2級
サムネイル_青の統計学_統計検定3級レベルの問題演習
統計検定3級の徹底攻略
青の統計学DsPlaygroundの販促バナー_G検定
青の統計学DsPlaygroundの販促バナー_数学入門
大学生向けのG検定の攻略記事のサムネイル

Youtube

Udemy

バナー広告

Ds Playground

青の統計学|X

Update Contents

ベルマン方程式をわかりやすく解説|動的計画法
ベルマン方程式をわかりやすく解説|動的計画法
08/15/2025
F検定の使い方と数学的背景をわかりやすく解説する
F検定とは?F分布も含めてわかりやすく解説|分散分析
08/15/2025
第一種の過誤や第二種の過誤を正しく理解するための記事【青の統計学】
【仮説検定】第1種の過誤と第2種の過誤とは?
08/14/2025
尤度比検定の使い方を具体例を通して理解する
尤度比検定とは?わかりやすく解説|カイ2乗分布との関わり
08/14/2025
【python】共分散分析(ANCOVA)の基礎から応用まで|因果推論
共分散分析(ANCOVA)とは?回帰分析や分散分析との違いもわかりやすく解説
08/13/2025
分散分析と共分散分析:基礎からPython実装までわかりやすく解説
分散分析と共分散分析:基礎からPython実装までわかりやすく解説
08/13/2025
Weltchのt検定をわかりやすく解説する
【非等分散編】pythonでWelch(ウェルチ)のt検定をやってみた
08/13/2025
t検定についてわかりやすく解説【青の統計学】
【t検定】t統計量(t値)の求め方
08/13/2025
統計検定3級の徹底攻略
統計検定3級|合格率や出題範囲、勉強法を徹底解説【2025年最新版】
08/12/2025
【超入門】統計学とは?文系でもわかる『データを武器にする』ための第一歩
【超入門】統計学とは?文系でもわかる『データを武器にする』ための第一歩
08/12/2025

New Contents

【超入門】統計学とは?文系でもわかる『データを武器にする』ための第一歩
【超入門】統計学とは?文系でもわかる『データを武器にする』ための第一歩
08/07/2025
ローレンツ曲線・ジニ係数・パレート分布をまとめて理解|不平等を数学で捉える
ローレンツ曲線・ジニ係数・パレート分布をまとめて理解|不平等を数学で捉える
07/15/2025
【カイ2乗検定】独立性検定と適合度検定についてわかりやすく解説
【カイ2乗検定】独立性検定と適合度検定についてわかりやすく解説
06/23/2025
中心極限定理についてわかりやすく解説|大数の法則との違い
中心極限定理についてわかりやすく解説|大数の法則との違い
06/07/2025
大学生向けのG検定の攻略記事のサムネイル
【体験談】G検定は大学生でも受かる?合格率、難易度、試験範囲を徹底解説
05/17/2025
スペクトラルクラスタリングとは?非線形データの分類
スペクトラルクラスタリングとは?非線形データの分類
03/18/2025
DBSCANとは?密度ベースのクラスタリング
DBSCANとは?密度ベースのクラスタリングを解説
03/16/2025
確率密度関数とは?確率質量関数との違いも解説
確率密度関数とは?確率質量関数との違いも解説
02/25/2025
効果量とは?サンプルサイズ設計を実務で使うには
効果量とは?サンプルサイズ設計を実務で使うには
02/03/2025
統計的なサンプルサイズ設計の手引き
サンプルサイズ設計のガイド:基礎理論と実践をわかりやすく
01/10/2025

Tag Cloud

AIC F統計量 GBDT GLM K-means法 KL divergence MCMC法 MSE PCA p値 ridge回帰 t検定 カイ2乗分布 ガンマ分布 ポアソン分布 マルコフ連鎖 ラグランジュの未定乗数法 ランダムウォーク ランダムフォレスト ロジスティック回帰 一様分布 不偏性 中心極限定理 二項分布 信頼区間 傾向スコア 共分散 再生性 分散分析 回帰分析 固定効果 多重共線性 大数の法則 尤度関数 層化抽出法 幾何分布 指数分布 最小二乗法 最尤法 標準偏差 標準誤差 正規分布 決定木 深層学習 相関係数

Recent

ベルマン方程式をわかりやすく解説|動的計画法
ベルマン方程式をわかりやすく解説|動的計画法
08/15/2025
F検定の使い方と数学的背景をわかりやすく解説する
F検定とは?F分布も含めてわかりやすく解説|分散分析
08/15/2025
第一種の過誤や第二種の過誤を正しく理解するための記事【青の統計学】
【仮説検定】第1種の過誤と第2種の過誤とは?
08/14/2025
尤度比検定の使い方を具体例を通して理解する
尤度比検定とは?わかりやすく解説|カイ2乗分布との関わり
08/14/2025
【python】共分散分析(ANCOVA)の基礎から応用まで|因果推論
共分散分析(ANCOVA)とは?回帰分析や分散分析との違いもわかりやすく解説
08/13/2025
分散分析と共分散分析:基礎からPython実装までわかりやすく解説
分散分析と共分散分析:基礎からPython実装までわかりやすく解説
08/13/2025
Weltchのt検定をわかりやすく解説する
【非等分散編】pythonでWelch(ウェルチ)のt検定をやってみた
08/13/2025
t検定についてわかりやすく解説【青の統計学】
【t検定】t統計量(t値)の求め方
08/13/2025
統計検定3級の徹底攻略
統計検定3級|合格率や出題範囲、勉強法を徹底解説【2025年最新版】
08/12/2025
【超入門】統計学とは?文系でもわかる『データを武器にする』ための第一歩
【超入門】統計学とは?文系でもわかる『データを武器にする』ための第一歩
08/12/2025

サイトマップはこちら

青の統計学|Follow Me!

青の統計学DsPlaygroundの販促バナー_統計検定2級
青の統計学DsPlaygroundの販促バナー_G検定

チートシート

バナー広告


バナー広告

バナー広告
バナー広告
バナー広告

シミュレーション

サンプルサイズ設計ツールのサムネイル

問題演習

統計検定2級問題演習へのリンク
  • 統計学
  • 機械学習
  • 統計検定対策
  • 大学の試験対策
  • マーケティング
  • DS Playground
  • 資料

Copyright © 青の統計学 All Rights Reserved.

Powered by WordPress with Lightning Theme & VK All in One Expansion Unit

MENU

  • 統計学
    • 統計学基礎
    • ベイズ
  • 機械学習
  • 統計検定対策
  • 大学の試験対策
  • マーケティング
  • DS Playground
  • 資料
PAGE TOP