12/21/2023 / 最終更新日時 : 09/14/2024 bluest NLP 【AICで使う】KL divergence(カルバック-ライブラー情報量)をわかりやすく解説|python こんにちは、今回はKL divergenceを解説します。 KL divergenceは、2つの確率分布間の相違を測定するために使用され、NLPにおける文書や単語の分布を比較する際に役立ちます。 レベル感としては、統計検 […]
06/06/2022 / 最終更新日時 : 09/08/2024 bluest ベイズ 【尤度って?】尤度関数と最尤推定量の解説と例題 確率分布のパラメータ\(θ\)を推定する方法の一つとして、最尤推定というものがあります。 最尤推定には、尤度関数を使うことが必須です。まずは尤度関数については見てみましょう。 尤度(likelihood)について 抑えて […]
06/03/2022 / 最終更新日時 : 09/14/2024 bluest 推測統計学 【モデル選択】AIC(赤池情報量基準)についてわかりやすく解説 AIC(赤池情報量基準) モデルを比較する時に、観測したデータとの当てはまりの良さで判断することがあります。 これは最大対数尤度で考えています。 「対数尤度が大きいモデルが良い」と言うのは、一つの軸ではありますが複雑なモ […]
05/03/2022 / 最終更新日時 : 01/16/2024 bluest Python 【時系列】ARモデルをわかりやすく解説|Yule-Walker法や最尤法も こんにちは、青の統計学です。 今回解説するのは、時系列モデルの基礎であるARモデルです。 まずは数式を見てみましょう。 ARモデル(autoregression model) $$y_{n} = \sum_{j=1}^{ […]
05/01/2022 / 最終更新日時 : 05/05/2024 bluest 推測統計学 【n-1で割る理由】不偏分散と不偏性についてわかりやすく解説 こんにちは、青の統計学です。 今回は、推定量の大事な特徴「不偏分散」について解説いたします。 不偏分散とは、不偏性を持つ分散のことです。 まず、不偏性について詳しく理解する必要があります。 分散から理解したい方はこちらを […]