07/09/2024 / 最終更新日時 : 01/10/2025 bluest 大学数学 多変量正規分布の確率密度関数と主な性質を解説|機械学習・統計学の基礎 こんにちは、青の統計学です! 今回は、多変量正規分布 について解説します。機械学習、統計的推論で幅広く利用される基礎的な分布ですので、数学的背景も踏まえて、理解が深まる構成にしているのでぜひ最後までご覧ください。 青の統 […]
06/08/2024 / 最終更新日時 : 01/28/2025 bluest ベイズ 【完全版】二項分布をわかりやすく説明|統計学 二項分布とは ビジネスでも多くの事象が適用できる二項分布について、基礎から解説します。 分布の可視化などは、青の統計学-DsPlayground-の確率分布可視化ツールが便利です。 ぜひご覧ください。 こちらをクリックす […]
04/21/2024 / 最終更新日時 : 11/26/2024 bluest Python 【Transformer】ソフトマックス関数についてわかりやすく解説|python こんにちは、青の統計学です。 今日は、GPT等の生成AIモデルでも使われているtransformerの中にあるソフトマックス関数についてご紹介いたします。 そのほかの非線形変換について詳しく知りたい方は、以下のコンテンツ […]
03/31/2024 / 最終更新日時 : 11/26/2024 bluest ベイズ 【深層生成モデル】VAEの仕組みをわかりやすく解説|ベイズ統計 こんにちは、青の統計学です。 今回は、深層生成モデルのVAEについて解説いたします。 ノイズに頑健な深層生成モデルとして、画像生成モデルとして利用されているので、生成AIの利用が広まってきた今勉強する価値ありです! VA […]
03/24/2024 / 最終更新日時 : 01/13/2025 bluest ベイズ 【MCMC法】ハミルトニアンモンテカルロをわかりやすく解説|ベイズ統計学 ハミルトニアンモンテカルロ(Hamiltonian Monte Carlo ベイズ統計学において、ハミルトニアンモンテカルロ(Hamiltonian Monte Carlo, HMC)を利用するアプローチは、主に複雑な事 […]
02/11/2024 / 最終更新日時 : 03/25/2024 bluest ベイズ 【因果推論】uplift modeling(アップリフトモデリング)について こんにちは、青の統計学です。 今回は、アップリフトモデリングについて解説していきます。 これはマーケティングや広告などの分野で、特定のアクション(例えば、プロモーションやキャンペーン)が個々の顧客やユーザーに与える影響を […]
01/16/2024 / 最終更新日時 : 09/22/2024 bluest 大学数学 ヤコビアンをわかりやすく解説【統計検定】|MCMCでの使用例 ヤコビアン 最初はなかなか理解が難しいかもしれませんが、MCMC法等の変数変換が必要な統計解析手法では必ず出てくる行列式です。 関連コンテンツはこちらをご覧ください。 【線形代数】固有値や固有ベクトルは機械学習にどう使わ […]
01/13/2024 / 最終更新日時 : 11/30/2024 bluest ベイズ 【完全ガイド】MCMC法についてわかりやすく解説|ベイズ推定 MCMC法|Markov Chain Monte Carlo法 今回は、ベイズ理論を使ったパラメータ推定手法であるMCMC法(Markov Chain Monte Carlo法 マルコフ連鎖モンテカルロ法)について解説い […]
01/06/2024 / 最終更新日時 : 09/08/2024 bluest 社会科学 【統計検定】確率分布のモーメント(積率)母関数完全ガイド|導出チートシート こんにちは、青の統計学です。 今回は、統計検定のチートシート番外編として、確率分布についてまとめようと思います。 各確率分布のモーメント母関数(積率母関数)が求められると、期待値と分散が計算できるようになります。 計算量 […]
12/29/2023 / 最終更新日時 : 11/12/2024 bluest Python 【時系列】状態空間モデルをわかりやすく解説|カルマンフィルタの仕組み こんにちは、青の統計学です。 今回は、状態空間モデルについて解説いたします。 MMMと並び広告効果の予測に使われたりと実務での応用も可能な時系列モデルですが、チューニングや実装の難易度が高いという点もあります。 状態の概 […]
12/21/2023 / 最終更新日時 : 11/17/2024 bluest Python 【AICで使う】KL divergence(カルバック-ライブラー情報量)をわかりやすく解説|python こんにちは、今回はKL divergenceを解説します。 KL divergenceは、2つの確率分布間の相違を測定するために使用され、NLPにおける文書や単語の分布を比較する際に役立ちます。 レベル感としては、統計検 […]
12/01/2023 / 最終更新日時 : 01/28/2025 bluest 社会科学 ベータ分布についてわかりやすく解説|二項分布との関わり ベータ分布とは? ベータ分布は、0から1の間の値を取る確率変数をモデル化するために用いられる連続確率分布です。 特に、割合や比率を表すような確率変数によく適合しますね。 例えば、 などが挙げられます。 ベータ分布の確率密 […]
11/12/2023 / 最終更新日時 : 12/06/2024 bluest 大学数学 ベルヌーイ分布の基本を徹底解説!期待値・分散の計算方法とは? ベルヌーイ分布とは? ベルヌーイ分布は、確率論と統計学の基礎を成す確率分布で、成功と失敗の2つの結果しか持たないベルヌーイ試行における結果をモデル化するために用いられます。 この分布は、コイン投げや製品の検査における合格 […]
11/11/2023 / 最終更新日時 : 03/18/2025 bluest Python k-medoidsとは?k-meansとの違いをわかりやすく解説 K-medoidsとは? K-medoidsは、データをグループ(クラスター)に分割するための教師なし学習アルゴリズムです。 この手法の基本的な目標は、データポイントを複数のクラスターに分割し、各クラスターが実際のデータ […]
10/12/2023 / 最終更新日時 : 09/22/2024 bluest 大学数学 統計検定2級のチートシートと独学で受かるコツ【最短合格】 統計検定2級の基本情報 統計検定2級は、大学基礎科目レベルの統計学の知識の習得とその活用について理解しているか問われる検定です。 取得することで機械学習やデータ分析を行う際に必要な基礎知識が身につきます。 統計検定2級の […]
09/03/2023 / 最終更新日時 : 09/09/2024 bluest ベイズ 【第2弾】統計検定準1級のチートシート|最短合格への道 こんにちは、青の統計学です。 こちらの記事だけでは、紹介しきれない内容があったため第二弾のチートシートになります。 【最短合格】統計検定準一級のチートシート|難易度や出題範囲について 統計検定2級はこちら→【最短】統計検 […]
08/06/2023 / 最終更新日時 : 10/14/2024 bluest 大学数学 【最短合格】統計検定準一級のチートシート|難易度や出題範囲について こんにちは、青の統計学です。 今回は、統計検定準一級のチートシートをご紹介します。 第二弾はこちら→【第2弾】統計検定準1級のチートシート|最短合格への道 統計検定2級はこちら→【最短】統計検定2級合格ロードマップとチー […]
04/22/2023 / 最終更新日時 : 09/07/2024 bluest Python 【統計学】分散不均一だと何が問題なのか|不偏性とガウスマルコフ性について こんにちは、青の統計学です。 今回は、分散均一と分散不均一について解説いたします。 推定量期待値の分散に関わる問題で、検定方法についても触れようと思います。 各種検定のチートシートは以下をクリック! 【最短】統計検定2級 […]
03/30/2023 / 最終更新日時 : 11/19/2023 bluest Python 【python】カーネルSVMとは?kernel関数を利用した非線形データの判別問題に挑戦|機械学習 こんにちは、青の統計学です。 今回は、判別タスクに関わる解決手法「カーネルSVM」をご紹介します。 判別タスクは、決定木やロジスティック回帰、線型SVM、k近傍法などたくさんあります。 カーネルSVMの特徴は、非線形デー […]
03/23/2023 / 最終更新日時 : 11/19/2023 bluest Python 【SHAP】スタッキング(stacking)で特徴量の解釈はできるのか|pythonアンサンブル学習 こんにちは、青の統計学です。 機械学習アルゴリズムの精度向上において、アンサンブル学習は非常に重要な役割を果たしています。 アンサンブル学習とは、複数の学習アルゴリズムを組み合わせることで、予測精度を向上させる手法です。 […]
03/10/2023 / 最終更新日時 : 10/30/2024 bluest Python 【Leave-one-out】データ量が少ない時に使うクロスバリデーション|python こんにちは、青の統計学です。 今回はデータ量が少ない時に有効な交差検証法の一種、Leave-one-outCVを紹介いたします。 Leave one out CV Leave-One-Out Cross-Validati […]
03/05/2023 / 最終更新日時 : 11/17/2023 bluest Python 【python】主成分分析(+回帰)の仕組みとコード例|教師なし学習 こんにちは、青の統計学です。 今回は教師なし学習の一つ「主成分分析」について解説いたします。 以下の記事よりも数学的背景を重めに取り扱っております。 【共線性解決!?】pythonで主成分分析(PCA)をやってみた 主成 […]
02/14/2023 / 最終更新日時 : 09/15/2024 bluest 大学数学 【統計検定】有限母集団修正についてわかりやすく解説|無限母集団との違い 有限母集団修正(Finite Population Correction, FPC) 有限母集団修正とは、有限母集団からの標本抽出に関連するバイアスを補正するための手法です。 まず、モチベーションから確認していきましょう […]
02/14/2023 / 最終更新日時 : 11/03/2024 bluest 大学数学 ゼロ過剰ポアソン分布(ZIP分布)をわかりやすく解説 ゼロ過剰ポアソン分布とは カウントデータ(離散的な非負整数値)を分析する際、ポアソン分布がよく使用されます。 しかし、実際のデータでは「0」の観測値が理論上の予測よりも多く出現することがあります。このような現象に対応する […]
01/29/2023 / 最終更新日時 : 01/13/2025 bluest Python 【SHAP】特徴量重要度や寄与度、限界効果を意思決定者にうまく伝えたい話|python これは直近仕事で抱えている問題を整理するために書き上げたコンテンツです。 今回は、prediction(予測)ではなくidentification(識別)に関する議論です。 kaggle等のコンペでは、予測に重きが置かれ […]
01/28/2023 / 最終更新日時 : 11/17/2024 bluest 大学数学 【例題あり】一様分布についてわかりやすく解説 一様分布 一様分布は最もシンプルな連続確率分布の一つで、「同じ確率で起こる」という直感的な概念を数学的に表現したものです。 例えばこんな感じです。 では、早速みていきましょう。 連続型一様分布 一様分布の特徴の一つが、連 […]
01/21/2023 / 最終更新日時 : 04/27/2024 bluest Python 【python】Lasso(ラッソ)回帰で疎なデータに対応しよう|機械学習 こんにちは、青の統計学です。 今回は、スパース学習の代表例である、Lasso(回帰)について解説いたします。 正則化項にL2ノルムを使う、リッジ回帰については、以下のコンテンツをご覧ください。 【python】Ridge […]
01/19/2023 / 最終更新日時 : 05/01/2023 bluest Python 【アンサンブル学習】ブートストラップ法をpythonで実装|バギング 今回は、ブートストラップ法を使って推定器を複数作り、予測値を出してみます。 pythonでの実装になるので、Rでの実装に興味がある方は以下のコンテンツをご覧ください。 【少ないデータを多く見せる】ブートストラップ法につい […]
01/08/2023 / 最終更新日時 : 01/10/2025 bluest 大学数学 【統計検定】フィッシャー情報量とクラメール・ラオの不等式について解説|python こんにちは、青の統計学です。 今回は、正規分布を例に取って、フィッシャー情報量とクラメール・ラオの不等式について深掘りできればと思います。 統計検定準一級の試験範囲にもなっておりますので、この機会に是非理解していきましょ […]
01/03/2023 / 最終更新日時 : 09/13/2024 bluest 社会科学 【論文解説】多重共線性は回帰分析にどのような影響を与えるのか こんにちは、青の統計学です。 今回は、多重共線性への理解を深め、対処などを考察するために論文を読んでみました。 多変量解析をするとなると、大抵はマルチコ(多重共線性)の壁にあたります。 そこで正確な理解をした方が良いと感 […]
12/30/2022 / 最終更新日時 : 01/11/2025 bluest マーケティング p値をわかりやすく解説|検出力を使った具体例 1. p値の定義と計算方法 1.1 p値の定義 p値 は、統計検定において次のように定義される数値です。 ここでいう「極端な値」とは、検定手法や両側検定・片側検定によって定義が変わります。 たとえば平均値に関する両側検定 […]
12/27/2022 / 最終更新日時 : 08/26/2024 bluest Python 【kaggle】ベイズ最適化とXGBでtitanicの予測問題を解く|python 今回はハイパーパラメータのチューニング手法の一つである、ベイズ最適について解説いたします。 グリッドサーチやランダムサーチに比べて、短い時間で最適なパラメータを発見できるとされています。 また、今回はデータ分析コンペのk […]
12/23/2022 / 最終更新日時 : 11/16/2024 bluest 大学数学 【例題付き】ラグランジュ未定乗数法の基本と応用をわかりやすく解説 ラグランジュの未定乗数法の基礎 ラグランジュの未定乗数法は、条件付き(制約付きともいう)最適化問題を解決するための数学的手法です。 条件付き最適化問題とは? ラグランジュ法を使うと、「ある制約条件を満たしながら、一番いい […]