12/29/2023 / 最終更新日時 : 11/12/2024 bluest Python 【時系列】状態空間モデルをわかりやすく解説|カルマンフィルタの仕組み こんにちは、青の統計学です。 今回は、状態空間モデルについて解説いたします。 MMMと並び広告効果の予測に使われたりと実務での応用も可能な時系列モデルですが、チューニングや実装の難易度が高いという点もあります。 状態の概 […]
12/21/2023 / 最終更新日時 : 11/17/2024 bluest Python 【AICで使う】KL divergence(カルバック-ライブラー情報量)をわかりやすく解説|python こんにちは、今回はKL divergenceを解説します。 KL divergenceは、2つの確率分布間の相違を測定するために使用され、NLPにおける文書や単語の分布を比較する際に役立ちます。 レベル感としては、統計検 […]
12/01/2023 / 最終更新日時 : 12/01/2024 bluest 推測統計学 ベータ分布についてわかりやすく解説|二項分布との関わり ベータ分布とは? ベータ分布は、0から1の間の値を取る確率変数をモデル化するために用いられる連続確率分布です。 特に、割合や比率を表すような確率変数によく適合しますね。 例えば、 などが挙げられます。 ベータ分布の確率密 […]
11/12/2023 / 最終更新日時 : 12/06/2024 bluest 大学数学 ベルヌーイ分布の基本を徹底解説!期待値・分散の計算方法とは? ベルヌーイ分布とは? ベルヌーイ分布は、確率論と統計学の基礎を成す確率分布で、成功と失敗の2つの結果しか持たないベルヌーイ試行における結果をモデル化するために用いられます。 この分布は、コイン投げや製品の検査における合格 […]
11/11/2023 / 最終更新日時 : 09/23/2024 bluest 大学数学 G検定のチートシート【最短合格】|細かい知識多め G検定|チートシート こんにちは、青の統計学です。 今回は、ディープラーニングG検定のチートシートをご紹介します。 より範囲を網羅した、noteの完全版チートシートはこちらをご覧ください。 https://note.co […]
10/12/2023 / 最終更新日時 : 09/22/2024 bluest 大学数学 統計検定2級のチートシートと独学で受かるコツ【最短合格】 統計検定2級の基本情報 統計検定2級は、大学基礎科目レベルの統計学の知識の習得とその活用について理解しているか問われる検定です。 取得することで機械学習やデータ分析を行う際に必要な基礎知識が身につきます。 統計検定2級の […]
09/03/2023 / 最終更新日時 : 09/09/2024 bluest ベイズ 【第2弾】統計検定準1級のチートシート|最短合格への道 こんにちは、青の統計学です。 こちらの記事だけでは、紹介しきれない内容があったため第二弾のチートシートになります。 【最短合格】統計検定準一級のチートシート|難易度や出題範囲について 統計検定2級はこちら→【最短】統計検 […]
08/06/2023 / 最終更新日時 : 10/14/2024 bluest 大学数学 【最短合格】統計検定準一級のチートシート|難易度や出題範囲について こんにちは、青の統計学です。 今回は、統計検定準一級のチートシートをご紹介します。 第二弾はこちら→【第2弾】統計検定準1級のチートシート|最短合格への道 統計検定2級はこちら→【最短】統計検定2級合格ロードマップとチー […]
04/22/2023 / 最終更新日時 : 09/07/2024 bluest Python 【統計学】分散不均一だと何が問題なのか|不偏性とガウスマルコフ性について こんにちは、青の統計学です。 今回は、分散均一と分散不均一について解説いたします。 推定量期待値の分散に関わる問題で、検定方法についても触れようと思います。 各種検定のチートシートは以下をクリック! 【最短】統計検定2級 […]
03/30/2023 / 最終更新日時 : 11/19/2023 bluest Python 【python】カーネルSVMとは?kernel関数を利用した非線形データの判別問題に挑戦|機械学習 こんにちは、青の統計学です。 今回は、判別タスクに関わる解決手法「カーネルSVM」をご紹介します。 判別タスクは、決定木やロジスティック回帰、線型SVM、k近傍法などたくさんあります。 カーネルSVMの特徴は、非線形デー […]
03/23/2023 / 最終更新日時 : 11/19/2023 bluest Python 【SHAP】スタッキング(stacking)で特徴量の解釈はできるのか|pythonアンサンブル学習 こんにちは、青の統計学です。 機械学習アルゴリズムの精度向上において、アンサンブル学習は非常に重要な役割を果たしています。 アンサンブル学習とは、複数の学習アルゴリズムを組み合わせることで、予測精度を向上させる手法です。 […]
03/10/2023 / 最終更新日時 : 10/30/2024 bluest Python 【Leave-one-out】データ量が少ない時に使うクロスバリデーション|python こんにちは、青の統計学です。 今回はデータ量が少ない時に有効な交差検証法の一種、Leave-one-outCVを紹介いたします。 Leave one out CV Leave-One-Out Cross-Validati […]
03/05/2023 / 最終更新日時 : 11/17/2023 bluest Python 【python】主成分分析(+回帰)の仕組みとコード例|教師なし学習 こんにちは、青の統計学です。 今回は教師なし学習の一つ「主成分分析」について解説いたします。 以下の記事よりも数学的背景を重めに取り扱っております。 【共線性解決!?】pythonで主成分分析(PCA)をやってみた 主成 […]
02/14/2023 / 最終更新日時 : 09/15/2024 bluest 大学数学 【統計検定】有限母集団修正についてわかりやすく解説|無限母集団との違い 有限母集団修正(Finite Population Correction, FPC) 有限母集団修正とは、有限母集団からの標本抽出に関連するバイアスを補正するための手法です。 まず、モチベーションから確認していきましょう […]
02/14/2023 / 最終更新日時 : 11/03/2024 bluest 大学数学 ゼロ過剰ポアソン分布(ZIP分布)をわかりやすく解説 ゼロ過剰ポアソン分布とは カウントデータ(離散的な非負整数値)を分析する際、ポアソン分布がよく使用されます。 しかし、実際のデータでは「0」の観測値が理論上の予測よりも多く出現することがあります。このような現象に対応する […]
01/29/2023 / 最終更新日時 : 04/13/2024 bluest Python 【SHAP】特徴量重要度や寄与度、限界効果を意思決定者にうまく伝えたい話|python これは直近仕事で抱えている問題を整理するために書き上げたコンテンツです。 今回は、prediction(予測)ではなくidentification(識別)に関する議論です。 kaggle等のコンペでは、予測に重きが置かれ […]
01/28/2023 / 最終更新日時 : 11/17/2024 bluest 大学数学 【例題あり】一様分布についてわかりやすく解説 一様分布 一様分布は最もシンプルな連続確率分布の一つで、「同じ確率で起こる」という直感的な概念を数学的に表現したものです。 例えばこんな感じです。 では、早速みていきましょう。 連続型一様分布 一様分布の特徴の一つが、連 […]
01/21/2023 / 最終更新日時 : 04/27/2024 bluest Python 【python】Lasso(ラッソ)回帰で疎なデータに対応しよう|機械学習 こんにちは、青の統計学です。 今回は、スパース学習の代表例である、Lasso(回帰)について解説いたします。 正則化項にL2ノルムを使う、リッジ回帰については、以下のコンテンツをご覧ください。 【python】Ridge […]
01/19/2023 / 最終更新日時 : 05/01/2023 bluest Python 【アンサンブル学習】ブートストラップ法をpythonで実装|バギング 今回は、ブートストラップ法を使って推定器を複数作り、予測値を出してみます。 pythonでの実装になるので、Rでの実装に興味がある方は以下のコンテンツをご覧ください。 【少ないデータを多く見せる】ブートストラップ法につい […]
01/08/2023 / 最終更新日時 : 06/02/2024 bluest 大学数学 【統計検定】フィッシャー情報量とクラメール・ラオの不等式について解説|python こんにちは、青の統計学です。 今回は、正規分布を例に取って、フィッシャー情報量とクラメール・ラオの不等式について深掘りできればと思います。 統計検定準一級の試験範囲にもなっておりますので、この機会に是非理解していきましょ […]
01/03/2023 / 最終更新日時 : 09/13/2024 bluest 推測統計学 【論文解説】多重共線性は回帰分析にどのような影響を与えるのか こんにちは、青の統計学です。 今回は、多重共線性への理解を深め、対処などを考察するために論文を読んでみました。 多変量解析をするとなると、大抵はマルチコ(多重共線性)の壁にあたります。 そこで正確な理解をした方が良いと感 […]
12/30/2022 / 最終更新日時 : 09/07/2024 bluest 推測統計学 【仮説検定】p値をゼロから解説|第一種の過誤,第二種の過誤,検出力 こんにちは、青の統計学です。 p値や有意水準の意味を正しく理解しているでしょうか? 実験計画や分析報告等で、正しく指標を使うためにも統計的仮説検定の正確な理解はとても大事です。 まず最初に大事なことを語りますが、P値や有 […]
12/27/2022 / 最終更新日時 : 08/26/2024 bluest Python 【kaggle】ベイズ最適化とXGBでtitanicの予測問題を解く|python 今回はハイパーパラメータのチューニング手法の一つである、ベイズ最適について解説いたします。 グリッドサーチやランダムサーチに比べて、短い時間で最適なパラメータを発見できるとされています。 また、今回はデータ分析コンペのk […]
12/23/2022 / 最終更新日時 : 11/16/2024 bluest 大学数学 【例題付き】ラグランジュ未定乗数法の基本と応用をわかりやすく解説 ラグランジュの未定乗数法の基礎 ラグランジュの未定乗数法は、条件付き(制約付きともいう)最適化問題を解決するための数学的手法です。 条件付き最適化問題とは? ラグランジュ法を使うと、「ある制約条件を満たしながら、一番いい […]
12/20/2022 / 最終更新日時 : 09/22/2024 bluest Python 【Box-Cox変換】様々な非線形変換について|python 今回は、モデル選択やパラメータチューニングの前に行う、特徴量エンジニアリングについて解説いたします。 中でも、非線形変換は特徴量の偏った分布を正規分布に近づけたりすることができ、高い精度につながることが多いです。 変数変 […]
12/20/2022 / 最終更新日時 : 04/27/2024 bluest Python 【判別問題】サポートベクトルマシン(SVM)の仕組み|python 今回は2値の判別問題で効果を発揮する、サポートベクトルマシン(support vector machine)について解説いたします。 数理最適化も扱うことになるのでいい勉強になると思います。 非線形分離に関しては以下のコ […]
12/15/2022 / 最終更新日時 : 09/09/2024 bluest Python 【python】Ridge(リッジ)回帰で多重共線性を解決する話 リッジ回帰とは、重回帰分析の一つであり、機械学習には厄介な「多重共線性」の影響を少なくできる手法のひとつです。 複雑なデータをモデルに当てはめるときには、一般に多くの説明変数を使って表現をしますが、 説明変数が増えるほど […]
11/27/2022 / 最終更新日時 : 09/09/2024 bluest Python 【分類タスク】ロジスティック回帰の使い方|python 重回帰モデルは、1つの目的変数に対して、説明変数が複数あるモデルです。 今回ご紹介する、「ロジスティック回帰」は目的変数が数値型ではなく、「Yes or No」の2値であるということが最大の特徴です。 pythonではな […]
11/15/2022 / 最終更新日時 : 11/28/2024 bluest Python 【機械学習】単回帰分析をわかりやすく解説|python 単回帰分析 教師あり学習 今回は、教師あり学習の基礎中の基礎である「単回帰分析」を実装します。 教師あり学習とは、説明変数(インプット)から目的変数(アウトプット)を予測するモデルを求める手法です。 訓練データには目的変 […]
08/04/2022 / 最終更新日時 : 12/10/2023 bluest Python 【共変量の調整】傾向スコア・マッチングによる因果推論 | python こんにちは、青の統計学です。今回は傾向スコアをご紹介します。 因果推論に必要な考え方ですので、しっかり習得しましょう。 傾向スコア (propensity score) 傾向スコアとは、群間比較研究において、介入を受けた […]
07/23/2022 / 最終更新日時 : 10/26/2024 bluest Python 【外れ値に対処】順位相関係数と相関係数の違いについて | python 相関係数は、外れ値があると大きく値が変わってしまうという特徴があり、正確な関係の把握が難しい場合があります。 そこで、外れ値に対処できる頑健(ロバスト)な相関係数が必要とされます。 それが、スピアマンの順位相関係数と呼ば […]
07/15/2022 / 最終更新日時 : 04/29/2024 bluest Python 【非等分散編】pythonでWelch(ウェルチ)のt検定をやってみた 2標本問題において、標本間の母分散が等しいという等分散の仮定は、限られた場でしか信憑性がありません。 今回は、標本間の母分散が異なるときに使えるWelchのt検定を学びましょう。 等分散の仮定を置いた2標本問題の方が簡単 […]
06/30/2022 / 最終更新日時 : 09/07/2024 bluest 推測統計学 【期待値の応用】モーメント母関数(積率母関数)について 統計検定準一級には、積率母関数についての問題があります。 マクローリン展開や合成関数の微分の知識が必要なことから、避けられがちですが、使う分には便利なものです。 今回は、モーメント法と積率母関数について解説します。 統計 […]