01/04/2025 / 最終更新日時 : 01/13/2025 bluest Python 負の二項分布をわかりやすく解説 はじめに! 負の二項分布は、ポアソン分布や二項分布よりも過分散を扱いやすい柔軟なモデルとして知られています。 実験・観測データにしばしば見られる「期待値以上の分散」をうまく捉えることができ、免疫学や微生物学などの生物学的 […]
08/31/2024 / 最終更新日時 : 01/04/2025 bluest 大学数学 統計検定2級の難易度と範囲を徹底解説【2025年最新版】 統計検定2級とは? 統計検定2級は、統計の基礎を理解し、実務に活かすためのスキルを認定する試験です。 近年データサイエンスや生成AI等の盛り上がりもあり、G検定と並んで注目度が上がってきましたね。 ただ、簡単に取得できる […]
01/06/2024 / 最終更新日時 : 09/08/2024 bluest 社会科学 【統計検定】確率分布のモーメント(積率)母関数完全ガイド|導出チートシート こんにちは、青の統計学です。 今回は、統計検定のチートシート番外編として、確率分布についてまとめようと思います。 各確率分布のモーメント母関数(積率母関数)が求められると、期待値と分散が計算できるようになります。 計算量 […]
02/14/2023 / 最終更新日時 : 11/03/2024 bluest 大学数学 ゼロ過剰ポアソン分布(ZIP分布)をわかりやすく解説 ゼロ過剰ポアソン分布とは カウントデータ(離散的な非負整数値)を分析する際、ポアソン分布がよく使用されます。 しかし、実際のデータでは「0」の観測値が理論上の予測よりも多く出現することがあります。このような現象に対応する […]
06/08/2022 / 最終更新日時 : 01/12/2025 bluest マーケティング 【GLMM】一般化線形混合モデルについてわかりやすく解説 1. 一般化線形モデル (GLM) と固定効果モデル まずは、前提知識を確認しましょう。 2. 一般化線形混合モデル (GLMM) の位置づけと特長 「GLMM = 一般化線形モデル + 混合効果」GLMM は、一般化線 […]
06/06/2022 / 最終更新日時 : 01/04/2025 bluest ベイズ 【尤度って?】尤度関数と最尤推定量の解説と例題 確率分布のパラメータ\(θ\)を推定する方法の一つとして、最尤推定というものがあります。 最尤推定には、尤度関数を使うことが必須です。まずは尤度関数については見てみましょう。 尤度(likelihood)について 抑えて […]
05/30/2022 / 最終更新日時 : 09/08/2024 bluest Python 【統計検定】ポアソン過程をわかりやすく解説|待ち行列理論 こんにちは、青の統計学です。 今回は統計検定準一級から登場する確立過程の一つ「ポアソン過程」について解説いたします。 このコンテンツに全て詰まっているのでブックマーク推奨です! 関わりの深い生存時間解析は、こちらで学習で […]
05/24/2022 / 最終更新日時 : 09/16/2024 bluest Python 【GLM】一般化線形モデルをわかりやすく解説|ポアソン回帰 一般化線形モデル(generalized liner model) 今回はGLMと呼ばれる「一般化線形モデル(generalized liner model)」を解説します。 よく似た名前として、分散分析や共分散分析など […]
04/23/2022 / 最終更新日時 : 12/06/2024 bluest Python 【統計学】ポアソン分布についてわかりやすく解説 ポアソン分布(poisson distribution) 統計学および確率論で用いられるポアソン分布とは、ある事象が一定の時間内に発生する回数を表す離散確率分布です。 定数\( \lambda > 0\ […]