コンテンツへスキップ ナビゲーションに移動

青の統計学

  • 統計学
    • 統計学基礎
    • ベイズ
  • 機械学習
  • 統計検定対策
  • 大学の試験対策
  • マーケティング
  • DS Playground
  • 資料

因果推論

  1. HOME
  2. 因果推論
統計的なサンプルサイズ設計の手引き
01/10/2025 / 最終更新日時 : 01/11/2025 bluest マーケティング

サンプルサイズ設計のガイド:基礎理論と実践をわかりやすく

1. はじめに サンプルサイズ設計は、研究・調査・実験計画(例えばCMの効果を測りたいマーケティング検証、アプリのUX改善のためのABテストなど)において重要なプロセスです。 そもそも、サンプルサイズを設定しようという背 […]

マーケティングミックスモデリング(MMM)について理解
12/26/2024 / 最終更新日時 : 01/07/2025 bluest Python

【完全版】MMMを課題設定から考える|Google Meridian

Media Mix Model|MMM MMM は、過去の広告支出や売上データを用いて、各マーケティング施策が売上(KPI)にどの程度貢献したかを定量的に分析する手法です。これにより、予算配分の最適化や将来のマーケティン […]

階層ベイズについてGoogleのMeridianを使った解説
12/10/2024 / 最終更新日時 : 01/07/2025 bluest ベイズ

階層ベイズをわかりやすく解説|Google Meridianを例に

階層ベイズモデルとは? 階層ベイズモデルは、データの複雑な構造を扱うための統計手法です。特に、異なるレベルでデータが相互に関連している場合、その特性を効果的に捉えることができます。このモデルは、データのばらつきや不確実性 […]

パス解析をわかりやすく解説する記事
12/07/2024 / 最終更新日時 : 01/07/2025 bluest マーケティング

パス解析をわかりやすく解説:因果推論からMMMまで

パス解析とは? パス解析は、複数の変数間の因果関係を明らかにするための統計的手法です。 特に、構造方程式モデリング(SEM)の一種であり、観測変数のみを用いて因果関係を推定することができます。 これにより、単なる相関分析 […]

偏相関係数と相関係数について理解する
08/04/2024 / 最終更新日時 : 10/26/2024 bluest 因果推論

【統計検定】偏相関係数の概念と計算方法 – 多変量解析の基礎

こんにちは、青の統計学です! 今回は、偏相関係数 について解説します。 相関係数よりも、より変数間の因果関係に踏み込んだ議論ができます。 相関係数については、こちらのコンテンツをご覧ください。 偏相関係数 偏相関係数は、 […]

【内生性の解決】操作変数法と2段階OLSをわかりやすく解説
07/26/2024 / 最終更新日時 : 01/13/2025 bluest 因果推論

【内生性の解決】操作変数法と2段階OLSをわかりやすく解説

操作変数法と二段階OLS 操作変数法と二段階OLSは、内生性の問題を扱う手法として広く利用されています。 内生性とは、説明変数と誤差項の間に相関が存在するという問題で、この場合、OLSによる推定量は一致性を満たしません。 […]

ハミルトニアンモンテカルロをmcmcに適用するための解説記事
03/24/2024 / 最終更新日時 : 01/13/2025 bluest ベイズ

【MCMC法】ハミルトニアンモンテカルロをわかりやすく解説|ベイズ統計学

ハミルトニアンモンテカルロ(Hamiltonian Monte Carlo ベイズ統計学において、ハミルトニアンモンテカルロ(Hamiltonian Monte Carlo, HMC)を利用するアプローチは、主に複雑な事 […]

02/11/2024 / 最終更新日時 : 03/25/2024 bluest ベイズ

【因果推論】uplift modeling(アップリフトモデリング)について

こんにちは、青の統計学です。 今回は、アップリフトモデリングについて解説していきます。 これはマーケティングや広告などの分野で、特定のアクション(例えば、プロモーションやキャンペーン)が個々の顧客やユーザーに与える影響を […]

MCMC法についてわかりやすく解説する
01/13/2024 / 最終更新日時 : 11/30/2024 bluest ベイズ

【完全ガイド】MCMC法についてわかりやすく解説|ベイズ推定

MCMC法|Markov Chain Monte Carlo法 今回は、ベイズ理論を使ったパラメータ推定手法であるMCMC法(Markov Chain Monte Carlo法 マルコフ連鎖モンテカルロ法)について解説い […]

【SHAP】特徴量重要度や寄与度、限界効果を意思決定者にうまく伝えたい話|python
01/29/2023 / 最終更新日時 : 01/13/2025 bluest Python

【SHAP】特徴量重要度や寄与度、限界効果を意思決定者にうまく伝えたい話|python

これは直近仕事で抱えている問題を整理するために書き上げたコンテンツです。 今回は、prediction(予測)ではなくidentification(識別)に関する議論です。 kaggle等のコンペでは、予測に重きが置かれ […]

01/13/2023 / 最終更新日時 : 01/07/2024 bluest 因果推論

成田悠輔教授の論文でも使われた回帰不連続デザイン(RDD)を学ぶ|python

今回は、子供に対する教育機関の因果効果を分析した、成田悠輔教授の論文を通して、回帰不連続デザインを解説いたします。 参照文献:Regression Discontinuity in Serial Dictatorship […]

計量経済学でよく使われる、傾向スコアマッチングの解説
08/04/2022 / 最終更新日時 : 01/13/2025 bluest Python

【共変量の調整】傾向スコア・マッチングによる因果推論 | python

こんにちは、青の統計学です。今回は傾向スコアをご紹介します。 因果推論に必要な考え方ですので、しっかり習得しましょう。 傾向スコア (propensity score) 傾向スコアとは、群間比較研究において、介入を受けた […]

サムネイル
06/18/2022 / 最終更新日時 : 09/09/2024 bluest Python

【python】共分散分析(ANCOVA)の基礎から応用まで|因果推論

共分散分析 共分散分析は、調整平均を用いて、共変量(covariate)の影響を考慮した上で、群間の平均値の差を検定する方法です。 分散分析(ANOVA)と似ていますが、共分散分析は共変量を考慮する点で異なります。 →こ […]

オッズとオッズ比を理解する
06/13/2022 / 最終更新日時 : 10/14/2024 bluest ベイズ

【ベイズ因子】オッズ比の使われ方を紹介します

こんにちは、青の統計学です。 今回はロジスティック回帰の解釈で定番の、オッズ比について考えていきます。 オッズ比は二つのカテゴリに分けられるデータに対して有用な指標であり、特に、疾患や事象が発生する確率について研究する際 […]

シンプソンのパラドクスを解説
06/12/2022 / 最終更新日時 : 01/06/2025 bluest 医薬生物学

シンプソンズのパラドクスとは?──「部分」と「全体」で逆転する統計の落とし穴

「相関関係はあるが、因果関係があるとは限らない」——統計を学ぶ方なら必ず耳にする言葉ですが、「因果はあるのに相関が消えてしまう」という、より厄介な現象も存在します。それがシンプソンズのパラドクス (Simpson’s P […]

06/11/2022 / 最終更新日時 : 01/13/2024 bluest Python

【因果推論】差の差(DID)分析による平均処置効果の推定|計量経済学

こんにちは、青の統計学です 今回は、社会科学の分野でもよく使われる「差の差分析」について解説いたします。 シンプルで理解しやすいかつ強力な分析手法ですが、並行トレンドの仮定など前提となるルールもあります。 差の差分析(d […]

ARモデルについてわかりやすく解説する記事
05/03/2022 / 最終更新日時 : 11/30/2024 bluest Python

【時系列】ARモデルをわかりやすく解説|Yule-Walker法や最尤法も

こんにちは、青の統計学です。 今回解説するのは、時系列モデルの基礎であるARモデルです。 まずは数式を見てみましょう。 ARモデル(autoregression model) $$y_{n} = \sum_{j=1}^{ […]

人気記事

統計検定2級の完全ガイド
統計検定3級の徹底攻略

Udemy

バナー広告

新サービス

青の統計学|X

Update Contents

効果量とは?サンプルサイズ設計を実務で使うには
効果量とは?サンプルサイズ設計を実務で使うには
05/17/2025
大学生向けのG検定の攻略記事のサムネイル
【体験談】G検定は大学生でも受かる?合格率、難易度、試験範囲を徹底解説
05/17/2025
統計検定2級の完全ガイド
統計検定2級の難易度と範囲を徹底解説【2025年最新版】
05/03/2025
自己組織化マップとは?データの視覚的探索と次元削減の手法
自己組織化マップとは?データの視覚的探索と次元削減の手法
03/18/2025
階層型クラスタリング徹底比較|ウォード法・最短距離法などの使い分け
階層型クラスタリング徹底比較|ウォード法・最短距離法などの使い分け
03/18/2025
k-medoidsとは?k-meansとの違いをわかりやすく解説
k-medoidsとは?k-meansとの違いをわかりやすく解説
03/18/2025
スペクトラルクラスタリングとは?非線形データの分類
スペクトラルクラスタリングとは?非線形データの分類
03/18/2025
DBSCANとは?密度ベースのクラスタリング
DBSCANとは?密度ベースのクラスタリングを解説
03/16/2025
【完全ガイド】k-means法とは?周辺のクラスタリング手法と比較
【完全ガイド】k-means法とは?周辺のクラスタリング手法と比較
03/15/2025
確率密度関数とは?確率質量関数との違いも解説
確率密度関数とは?確率質量関数との違いも解説
03/15/2025

New Contents

効果量とは?サンプルサイズ設計を実務で使うには
効果量とは?サンプルサイズ設計を実務で使うには
02/03/2025
大学生向けのG検定の攻略記事のサムネイル
【体験談】G検定は大学生でも受かる?合格率、難易度、試験範囲を徹底解説
05/17/2025
スペクトラルクラスタリングとは?非線形データの分類
スペクトラルクラスタリングとは?非線形データの分類
03/18/2025
DBSCANとは?密度ベースのクラスタリング
DBSCANとは?密度ベースのクラスタリングを解説
03/16/2025
確率密度関数とは?確率質量関数との違いも解説
確率密度関数とは?確率質量関数との違いも解説
02/25/2025
統計的なサンプルサイズ設計の手引き
サンプルサイズ設計のガイド:基礎理論と実践をわかりやすく
01/10/2025
グラフニューラルネットワークの基礎と応用事例
グラフニューラルネットワークの基礎と応用事例
01/08/2025
パレートの法則についてわかりやすく解説
パレートの法則についてわかりやすく解説
01/07/2025
負の二項分布を実験に活かした具体例
負の二項分布をわかりやすく解説
01/04/2025
ベイズ因子をABテストに使ってみる
ベイズ因子とは?──定義と直感的解釈
01/01/2025

Tag Cloud

AIC F統計量 GBDT GLM K-means法 KL divergence MCMC法 MSE PCA p値 ridge回帰 t検定 カイ2乗分布 ガンマ分布 ブートストラップ法 ポアソン分布 マルコフ連鎖 ラグランジュの未定乗数法 ランダムウォーク ランダムフォレスト ロジスティック回帰 一様分布 不偏性 中心極限定理 二項分布 信頼区間 共分散 再生性 分散分析 回帰分析 固定効果 多重共線性 尤度比検定 尤度関数 層化抽出法 幾何分布 指数分布 最小二乗法 最尤法 標準偏差 標準誤差 正規分布 決定木 深層学習 相関係数

Recent

効果量とは?サンプルサイズ設計を実務で使うには
効果量とは?サンプルサイズ設計を実務で使うには
05/17/2025
大学生向けのG検定の攻略記事のサムネイル
【体験談】G検定は大学生でも受かる?合格率、難易度、試験範囲を徹底解説
05/17/2025
統計検定2級の完全ガイド
統計検定2級の難易度と範囲を徹底解説【2025年最新版】
05/03/2025
自己組織化マップとは?データの視覚的探索と次元削減の手法
自己組織化マップとは?データの視覚的探索と次元削減の手法
03/18/2025
階層型クラスタリング徹底比較|ウォード法・最短距離法などの使い分け
階層型クラスタリング徹底比較|ウォード法・最短距離法などの使い分け
03/18/2025
k-medoidsとは?k-meansとの違いをわかりやすく解説
k-medoidsとは?k-meansとの違いをわかりやすく解説
03/18/2025
スペクトラルクラスタリングとは?非線形データの分類
スペクトラルクラスタリングとは?非線形データの分類
03/18/2025
DBSCANとは?密度ベースのクラスタリング
DBSCANとは?密度ベースのクラスタリングを解説
03/16/2025
【完全ガイド】k-means法とは?周辺のクラスタリング手法と比較
【完全ガイド】k-means法とは?周辺のクラスタリング手法と比較
03/15/2025
確率密度関数とは?確率質量関数との違いも解説
確率密度関数とは?確率質量関数との違いも解説
03/15/2025

サイトマップはこちら

青の統計学|Follow Me!

チートシート

バナー広告


バナー広告

バナー広告
バナー広告
バナー広告
バナー広告

シミュレーション

サンプルサイズ設計ツールのサムネイル

問題演習

統計検定2級問題演習へのリンク
  • 統計学
  • 機械学習
  • 統計検定対策
  • 大学の試験対策
  • マーケティング
  • DS Playground
  • 資料

Copyright © 青の統計学 All Rights Reserved.

Powered by WordPress with Lightning Theme & VK All in One Expansion Unit

MENU

  • 統計学
    • 統計学基礎
    • ベイズ
  • 機械学習
  • 統計検定対策
  • 大学の試験対策
  • マーケティング
  • DS Playground
  • 資料
PAGE TOP