コンテンツへスキップ ナビゲーションに移動

青の統計学

  • 統計学
    • 統計学基礎
    • ベイズ
  • 機械学習
  • 統計検定対策
  • 大学の試験対策
  • マーケティング
  • DS Playground
  • 資料

統計検定

  1. HOME
  2. 資格試験
  3. 統計検定
確率密度関数とは?確率質量関数との違いも解説
02/25/2025 / 最終更新日時 : 03/15/2025 bluest 大学数学

確率密度関数とは?確率質量関数との違いも解説

1. 確率密度関数とは? 確率密度関数(PDF)は、ある範囲内で確率変数がどのように分布するかを表す関数です。 確率密度関数の値自体は「確率」を直接示すものではなく、ある区間内に確率変数が収まる確率は、確率密度関数をその […]

効果量とは?サンプルサイズ設計を実務で使うには
02/03/2025 / 最終更新日時 : 02/03/2025 bluest マーケティング

効果量とは?サンプルサイズ設計を実務で使うには

「統計的に有意な差が出ました!」 日々の分析で、p値が0.05を下回った結果に一喜一憂しがちです。その「有意差」、本当に意味のある差と言えるのでしょうか? ここに効果量という概念が使えます。 1. 効果量とは何か? – […]

階層ベイズについてGoogleのMeridianを使った解説
12/10/2024 / 最終更新日時 : 01/07/2025 bluest ベイズ

階層ベイズをわかりやすく解説|Google Meridianを例に

階層ベイズモデルとは? 階層ベイズモデルは、データの複雑な構造を扱うための統計手法です。特に、異なるレベルでデータが相互に関連している場合、その特性を効果的に捉えることができます。このモデルは、データのばらつきや不確実性 […]

時系列解析の一つ、SARIMAモデルについて理解する記事
11/30/2024 / 最終更新日時 : 12/01/2024 bluest Python

SARIMAモデルについてわかりやすく解説|定常時系列解析

SARIMAモデル SARIMA(Seasonal AutoRegressive Integrated Moving Average)モデルは、時系列データの予測に用いられるモデルです。時系列データに存在する、トレンド、 […]

統計検定3級の徹底攻略
11/02/2024 / 最終更新日時 : 01/13/2025 bluest 大学数学

統計検定3級|合格率や出題範囲、勉強法を徹底解説【2025年最新版】

統計検定3級とは? 統計検定3級は、統計学の基礎知識を評価するために設けられた重要な資格試験で、データを適切に扱う能力や、統計学の基本的な概念を理解していることを証明することを目的としています。 1級からさまざまなレベル […]

統計検定2級の完全ガイド
08/31/2024 / 最終更新日時 : 05/03/2025 bluest 大学数学

統計検定2級の難易度と範囲を徹底解説【2025年最新版】

統計検定2級とは? 統計検定2級は、統計の基礎を理解し、実務に活かすためのスキルを認定する試験です。 近年データサイエンスや生成AI等の盛り上がりもあり、G検定と並んで注目度が上がってきましたね。 ただ、簡単に取得できる […]

ベイズ統計学を使ったHPD区間の解説記事
08/11/2024 / 最終更新日時 : 12/01/2024 bluest ベイズ

HPD区間をわかりやすく解説|信頼区間との違いは?

HPD(Highest Posterior Density Interval)区間とは HPD区間は、指定された確率(例えば95%)を含む最小の区間を求めます。 事後分布から得られる区間であり、その区間に含まれる事後確率 […]

偏相関係数と相関係数について理解する
08/04/2024 / 最終更新日時 : 10/26/2024 bluest 因果推論

【統計検定】偏相関係数の概念と計算方法 – 多変量解析の基礎

こんにちは、青の統計学です! 今回は、偏相関係数 について解説します。 相関係数よりも、より変数間の因果関係に踏み込んだ議論ができます。 相関係数については、こちらのコンテンツをご覧ください。 偏相関係数 偏相関係数は、 […]

母比率の差の検定を正しく理解する
08/03/2024 / 最終更新日時 : 01/10/2025 bluest 大学数学

【統計検定でも頻出】母比率の差の検定と具体例

こんにちは、青の統計学です! 今回は、母比率の差の検定 について解説します。 母平均や母分散の検定については、こちらの記事をご覧ください。 青の統計学では、noteで統計検定やG検定に関するチートシートを掲載しております […]

生存時間解析で使えるワイブル分布をわかりやすく解説
07/27/2024 / 最終更新日時 : 01/28/2025 bluest 医薬生物学

【生存時間解析】ワイブル分布をわかりやすく|確率分布とパラメータ推定方法

ワイブル分布は、製品の故障時間や材料の寿命、医療分野の生存時間解析などで広く使われている連続確率分布です。機械部品の寿命データや、生体における生存時間データを扱う際に非常に有用で、信頼性工学や生存分析の分野で欠かせない存 […]

生存時間解析を基礎から理解する
07/27/2024 / 最終更新日時 : 01/04/2025 bluest 大学数学

生存時間解析をわかりやすく解説- ポアソン過程との関係と最尤推定

こんにちは、青の統計学です! 今回は、生存時間解析について解説します。 数学的背景も踏まえて、理解が深まる構成にしているのでぜひ最後までご覧ください。 青の統計学では、noteで統計検定やG検定に関するチートシートを掲載 […]

【内生性の解決】操作変数法と2段階OLSをわかりやすく解説
07/26/2024 / 最終更新日時 : 01/13/2025 bluest 因果推論

【内生性の解決】操作変数法と2段階OLSをわかりやすく解説

操作変数法と二段階OLS 操作変数法と二段階OLSは、内生性の問題を扱う手法として広く利用されています。 内生性とは、説明変数と誤差項の間に相関が存在するという問題で、この場合、OLSによる推定量は一致性を満たしません。 […]

変動係数について使い方と解釈を理解する記事
07/25/2024 / 最終更新日時 : 11/04/2024 bluest 大学数学

変動係数とは?|確率変数の相対的な散らばりを表す指標の解説

こんにちは、青の統計学です! 今回は、変動係数 について解説します。数学的背景も踏まえて、理解が深まる構成にしているのでぜひ最後までご覧ください。 青の統計学では、noteで統計検定やG検定に関するチートシートを掲載して […]

母分散の推定と検定をわかりやすく解説
07/24/2024 / 最終更新日時 : 09/22/2024 bluest 大学数学

母分散の区間推定と検定 – 標本からの母集団の分散推定手法

こんにちは、青の統計学です! 今回は、母分散の区間推定と検定 について解説します。 数学的背景も踏まえて、理解が深まる構成にしているのでぜひ最後までご覧ください。 母平均については、こちらをどうぞ 青の統計学では、not […]

母平均の区間推定と検定
07/21/2024 / 最終更新日時 : 08/03/2024 bluest 大学数学

母平均の区間推定と検定 – 正規分布と標準誤差の概念

こんにちは、青の統計学です! 今回は、母平均の区間推定と検定 について解説します 統計検定2級で頻出の分野ですので、分散が未知、既知の場合も含めてぜひ押さえて欲しいです。 母比率の検定についてはこちらをどうぞ 青の統計学 […]

共分散と相関係数の違いを丁寧に解説
07/20/2024 / 最終更新日時 : 09/22/2024 bluest 大学数学

共分散と相関係数をわかりやすく解説 – 2変数間の関係性を測る指標

こんにちは、青の統計学です! 今回は、相関係数と共分散 について解説します。 高校でも習うと思いますが、しっかりと定義を理解できているでしょうか? 大学以降は、多変量版も考える必要があるのでこの記事を機会に勉強してみてく […]

内生性と外生性を比較して正しく理解するための記事
07/18/2024 / 最終更新日時 : 11/16/2024 bluest 大学数学

内生性と外生性の概念と操作変数法による内生性の問題の解決方法をわかりやすく。

こんにちは、青の統計学です! 今回は、経済学の授業などでよく出るワード「内生性と外生性」 について解説します。 青の統計学では、noteで統計検定やG検定に関するチートシートを掲載しております。こちらをクリック! 内生性 […]

期待値と分散についてわかりやすく解説
07/17/2024 / 最終更新日時 : 01/10/2025 bluest 大学数学

期待値と分散について|確率論と統計学の重要概念をわかりやすく解説

こんにちは、青の統計学です! 今回は、データの解釈や意思決定を行うために役立つ、期待値と分散 について解説します。 簡単だからといって、曖昧な理解をしていないでしょうか?? 数学的背景も踏まえて、理解が深まる構成にしてい […]

信用区間について定義から丁寧に解説する記事
07/15/2024 / 最終更新日時 : 01/13/2025 bluest ベイズ

信頼区間と信用区間の違いをわかりやすく解説

信頼区間と信用区間 母集団のパラメータを推定する際に用いられる「信頼区間」と「信用区間」は、どちらもある範囲内に真の値が含まれる確率を示す概念ですが、その解釈や計算方法に大きな違いがあります。 詳しく見ていきましょう。 […]

F検定の使い方と数学的背景をわかりやすく解説する
07/14/2024 / 最終更新日時 : 02/09/2025 bluest 大学数学

F検定とは?F分布も含めてわかりやすく解説|分散分析

1. F検定の概要とその重要性 1.1 F検定とは? F検定は、2つ以上の母集団の分散の比を統計的に検定するための手法です。具体的には、2群の分散が等しいかどうか、または複数の群間で平均値に有意な差があるか(分散分析:A […]

重回帰分析をわかりやすく解説する
07/13/2024 / 最終更新日時 : 10/30/2024 bluest 大学数学

重回帰分析をわかりやすく解説 – 目的変数と複数の説明変数の関係を分析する手法

重回帰分析とOLS 重回帰分析は、1つの目的変数と複数の説明変数の間の関係を分析する手法です。 具体的な定義の前に、使い道を確認しておきましょう。 重回帰分析は、実務においてさまざまな分野で広く用いられている統計的手法で […]

KL情報量の成り立ちと使い方を理解する
07/11/2024 / 最終更新日時 : 11/12/2024 bluest ベイズ

相互情報量の定義とその重要性をわかりやすく解説 | KLダイバージェンス

こんにちは、青の統計学です! 今回は、相互情報量 について解説します。 G検定にも範囲に入っていてびっくりしました。結構概念を理解するのに前提知識が必要なので、じっくり見ていきましょう。 数学的背景も踏まえて、理解が深ま […]

指数分布の使い方と数学的背景を理解する
07/10/2024 / 最終更新日時 : 01/18/2025 bluest 大学数学

指数分布をわかりやすく解説|無記憶性

指数分布 指数分布は、連続型確率分布の一つですね。 大学の学部レベルの試験や統計検定二級まで、頻出です。 指数分布の定義や性質について詳しくみていきましょう。 指数分布の確率密度関数について 事象が発生するまでの時間間隔 […]

カイ二乗分布をわかりやす く解説【青の統計学】
07/10/2024 / 最終更新日時 : 02/09/2025 bluest 大学数学

カイ二乗分布とは?正規分布との関わりとわかりやすく解説

カイ2乗分布 カイ二乗分布は連続確率分布の一つです。 この分布は、正規分布に従う独立な確率変数の二乗和によって定義されます。具体的には、自由度${k}$のカイ二乗分布は、${k}$個の独立な標準正規分布 ${N(0, 1 […]

多変量正規分布についてわかりやすく解説する
07/09/2024 / 最終更新日時 : 01/10/2025 bluest 大学数学

多変量正規分布の確率密度関数と主な性質を解説|機械学習・統計学の基礎

こんにちは、青の統計学です! 今回は、多変量正規分布 について解説します。機械学習、統計的推論で幅広く利用される基礎的な分布ですので、数学的背景も踏まえて、理解が深まる構成にしているのでぜひ最後までご覧ください。 青の統 […]

二項分布を基礎から応用まで解説
06/08/2024 / 最終更新日時 : 01/28/2025 bluest ベイズ

【完全版】二項分布をわかりやすく説明|統計学

二項分布とは ビジネスでも多くの事象が適用できる二項分布について、基礎から解説します。 分布の可視化などは、青の統計学-DsPlayground-の確率分布可視化ツールが便利です。 ぜひご覧ください。 こちらをクリックす […]

ハミルトニアンモンテカルロをmcmcに適用するための解説記事
03/24/2024 / 最終更新日時 : 01/13/2025 bluest ベイズ

【MCMC法】ハミルトニアンモンテカルロをわかりやすく解説|ベイズ統計学

ハミルトニアンモンテカルロ(Hamiltonian Monte Carlo ベイズ統計学において、ハミルトニアンモンテカルロ(Hamiltonian Monte Carlo, HMC)を利用するアプローチは、主に複雑な事 […]

ヤコビアンをわかりやすく解説する
01/16/2024 / 最終更新日時 : 09/22/2024 bluest 大学数学

ヤコビアンをわかりやすく解説【統計検定】|MCMCでの使用例

ヤコビアン 最初はなかなか理解が難しいかもしれませんが、MCMC法等の変数変換が必要な統計解析手法では必ず出てくる行列式です。 関連コンテンツはこちらをご覧ください。 【線形代数】固有値や固有ベクトルは機械学習にどう使わ […]

MCMC法についてわかりやすく解説する
01/13/2024 / 最終更新日時 : 11/30/2024 bluest ベイズ

【完全ガイド】MCMC法についてわかりやすく解説|ベイズ推定

MCMC法|Markov Chain Monte Carlo法 今回は、ベイズ理論を使ったパラメータ推定手法であるMCMC法(Markov Chain Monte Carlo法 マルコフ連鎖モンテカルロ法)について解説い […]

01/06/2024 / 最終更新日時 : 09/08/2024 bluest 社会科学

【統計検定】確率分布のモーメント(積率)母関数完全ガイド|導出チートシート

こんにちは、青の統計学です。 今回は、統計検定のチートシート番外編として、確率分布についてまとめようと思います。 各確率分布のモーメント母関数(積率母関数)が求められると、期待値と分散が計算できるようになります。 計算量 […]

ベータ分布について数学的背景からわかりやすく解説する
12/01/2023 / 最終更新日時 : 01/28/2025 bluest 社会科学

ベータ分布についてわかりやすく解説|二項分布との関わり

ベータ分布とは? ベータ分布は、0から1の間の値を取る確率変数をモデル化するために用いられる連続確率分布です。 特に、割合や比率を表すような確率変数によく適合しますね。 例えば、 などが挙げられます。 ベータ分布の確率密 […]

ベルヌーイ分布をわかりやす く解説【青の統計学】
11/12/2023 / 最終更新日時 : 12/06/2024 bluest 大学数学

ベルヌーイ分布の基本を徹底解説!期待値・分散の計算方法とは?

ベルヌーイ分布とは? ベルヌーイ分布は、確率論と統計学の基礎を成す確率分布で、成功と失敗の2つの結果しか持たないベルヌーイ試行における結果をモデル化するために用いられます。 この分布は、コイン投げや製品の検査における合格 […]

WEB版の統計検定2級のチートシート
10/12/2023 / 最終更新日時 : 09/22/2024 bluest 大学数学

統計検定2級のチートシートと独学で受かるコツ【最短合格】

統計検定2級の基本情報 統計検定2級は、大学基礎科目レベルの統計学の知識の習得とその活用について理解しているか問われる検定です。 取得することで機械学習やデータ分析を行う際に必要な基礎知識が身につきます。 統計検定2級の […]

投稿ナビゲーション

  • 固定ページ 1
  • 固定ページ 2
  • 固定ページ 3
  • »

人気記事

統計検定2級の完全ガイド
統計検定3級の徹底攻略

Udemy

バナー広告

新サービス

青の統計学|X

Update Contents

統計検定2級の完全ガイド
統計検定2級の難易度と範囲を徹底解説【2025年最新版】
05/03/2025
自己組織化マップとは?データの視覚的探索と次元削減の手法
自己組織化マップとは?データの視覚的探索と次元削減の手法
03/18/2025
階層型クラスタリング徹底比較|ウォード法・最短距離法などの使い分け
階層型クラスタリング徹底比較|ウォード法・最短距離法などの使い分け
03/18/2025
k-medoidsとは?k-meansとの違いをわかりやすく解説
k-medoidsとは?k-meansとの違いをわかりやすく解説
03/18/2025
スペクトラルクラスタリングとは?非線形データの分類
スペクトラルクラスタリングとは?非線形データの分類
03/18/2025
DBSCANとは?密度ベースのクラスタリング
DBSCANとは?密度ベースのクラスタリングを解説
03/16/2025
【完全ガイド】k-means法とは?周辺のクラスタリング手法と比較
【完全ガイド】k-means法とは?周辺のクラスタリング手法と比較
03/15/2025
確率密度関数とは?確率質量関数との違いも解説
確率密度関数とは?確率質量関数との違いも解説
03/15/2025
多重共線性を正しく理解する
【完全攻略】多重共線性をわかりやすく解説
02/20/2025
パレートの法則についてわかりやすく解説
パレートの法則についてわかりやすく解説
02/12/2025

New Contents

スペクトラルクラスタリングとは?非線形データの分類
スペクトラルクラスタリングとは?非線形データの分類
03/18/2025
DBSCANとは?密度ベースのクラスタリング
DBSCANとは?密度ベースのクラスタリングを解説
03/16/2025
確率密度関数とは?確率質量関数との違いも解説
確率密度関数とは?確率質量関数との違いも解説
02/25/2025
効果量とは?サンプルサイズ設計を実務で使うには
効果量とは?サンプルサイズ設計を実務で使うには
02/03/2025
統計的なサンプルサイズ設計の手引き
サンプルサイズ設計のガイド:基礎理論と実践をわかりやすく
01/10/2025
グラフニューラルネットワークの基礎と応用事例
グラフニューラルネットワークの基礎と応用事例
01/08/2025
パレートの法則についてわかりやすく解説
パレートの法則についてわかりやすく解説
01/07/2025
負の二項分布を実験に活かした具体例
負の二項分布をわかりやすく解説
01/04/2025
ベイズ因子をABテストに使ってみる
ベイズ因子とは?──定義と直感的解釈
01/01/2025
マーケティングミックスモデリング(MMM)について理解
【完全版】MMMを課題設定から考える|Google Meridian
12/26/2024

Tag Cloud

AIC F統計量 GBDT GLM K-means法 KL divergence MCMC法 MSE PCA p値 ridge回帰 t検定 カイ2乗分布 ガンマ分布 ブートストラップ法 ポアソン分布 マルコフ連鎖 ラグランジュの未定乗数法 ランダムウォーク ランダムフォレスト ロジスティック回帰 一様分布 不偏性 中心極限定理 二項分布 信頼区間 共分散 再生性 分散分析 回帰分析 固定効果 多重共線性 尤度比検定 尤度関数 層化抽出法 幾何分布 指数分布 最小二乗法 最尤法 標準偏差 標準誤差 正規分布 決定木 深層学習 相関係数

Recent

統計検定2級の完全ガイド
統計検定2級の難易度と範囲を徹底解説【2025年最新版】
05/03/2025
自己組織化マップとは?データの視覚的探索と次元削減の手法
自己組織化マップとは?データの視覚的探索と次元削減の手法
03/18/2025
階層型クラスタリング徹底比較|ウォード法・最短距離法などの使い分け
階層型クラスタリング徹底比較|ウォード法・最短距離法などの使い分け
03/18/2025
k-medoidsとは?k-meansとの違いをわかりやすく解説
k-medoidsとは?k-meansとの違いをわかりやすく解説
03/18/2025
スペクトラルクラスタリングとは?非線形データの分類
スペクトラルクラスタリングとは?非線形データの分類
03/18/2025
DBSCANとは?密度ベースのクラスタリング
DBSCANとは?密度ベースのクラスタリングを解説
03/16/2025
【完全ガイド】k-means法とは?周辺のクラスタリング手法と比較
【完全ガイド】k-means法とは?周辺のクラスタリング手法と比較
03/15/2025
確率密度関数とは?確率質量関数との違いも解説
確率密度関数とは?確率質量関数との違いも解説
03/15/2025
多重共線性を正しく理解する
【完全攻略】多重共線性をわかりやすく解説
02/20/2025
パレートの法則についてわかりやすく解説
パレートの法則についてわかりやすく解説
02/12/2025

サイトマップはこちら

青の統計学|Follow Me!

チートシート

バナー広告


バナー広告

バナー広告
バナー広告
バナー広告
バナー広告

シミュレーション

サンプルサイズ設計ツールのサムネイル

問題演習

統計検定2級問題演習へのリンク
  • 統計学
  • 機械学習
  • 統計検定対策
  • 大学の試験対策
  • マーケティング
  • DS Playground
  • 資料

Copyright © 青の統計学 All Rights Reserved.

Powered by WordPress with Lightning Theme & VK All in One Expansion Unit

MENU

  • 統計学
    • 統計学基礎
    • ベイズ
  • 機械学習
  • 統計検定対策
  • 大学の試験対策
  • マーケティング
  • DS Playground
  • 資料
PAGE TOP