01/01/2025 / 最終更新日時 : 01/07/2025 bluest Python ベイズ因子とは?──定義と直感的解釈 ベイズ因子 (Bayes Factor) は、2つの仮説 ${H_1, H_2}$ の相対的な支持度を評価するための指標です。 とくに「帰無仮説 (null hypothesis) vs. 対立仮説 (alternat […]
12/26/2024 / 最終更新日時 : 01/07/2025 bluest Python 【完全版】MMMを課題設定から考える|Google Meridian Media Mix Model|MMM MMM は、過去の広告支出や売上データを用いて、各マーケティング施策が売上(KPI)にどの程度貢献したかを定量的に分析する手法です。これにより、予算配分の最適化や将来のマーケティン […]
12/10/2024 / 最終更新日時 : 01/07/2025 bluest ベイズ 階層ベイズをわかりやすく解説|Google Meridianを例に 階層ベイズモデルとは? 階層ベイズモデルは、データの複雑な構造を扱うための統計手法です。特に、異なるレベルでデータが相互に関連している場合、その特性を効果的に捉えることができます。このモデルは、データのばらつきや不確実性 […]
08/11/2024 / 最終更新日時 : 12/01/2024 bluest ベイズ HPD区間をわかりやすく解説|信頼区間との違いは? HPD(Highest Posterior Density Interval)区間とは HPD区間は、指定された確率(例えば95%)を含む最小の区間を求めます。 事後分布から得られる区間であり、その区間に含まれる事後確率 […]
07/16/2024 / 最終更新日時 : 10/30/2024 bluest ベイズ ディリクレ分布 – ベイズ推論の重要な確率分布・事前分布としての役割 こんにちは、青の統計学です! 今回は、ディリクレ分布 について解説します。 数学的背景も踏まえて、理解が深まる構成にしているのでぜひ最後までご覧ください。 青の統計学では、noteで統計検定やG検定に関するチートシートを […]
07/15/2024 / 最終更新日時 : 01/13/2025 bluest ベイズ 信頼区間と信用区間の違いをわかりやすく解説 信頼区間と信用区間 母集団のパラメータを推定する際に用いられる「信頼区間」と「信用区間」は、どちらもある範囲内に真の値が含まれる確率を示す概念ですが、その解釈や計算方法に大きな違いがあります。 詳しく見ていきましょう。 […]
07/11/2024 / 最終更新日時 : 11/12/2024 bluest ベイズ 相互情報量の定義とその重要性をわかりやすく解説 | KLダイバージェンス こんにちは、青の統計学です! 今回は、相互情報量 について解説します。 G検定にも範囲に入っていてびっくりしました。結構概念を理解するのに前提知識が必要なので、じっくり見ていきましょう。 数学的背景も踏まえて、理解が深ま […]
06/08/2024 / 最終更新日時 : 01/10/2025 bluest ベイズ 【完全版】二項分布をわかりやすく説明|統計学 二項分布 二項分布を理解するには、まずベルヌーイ分布の理解が必須です。 ベルヌーイ分布 ベルヌーイ分布は、単一の確率実験において、成功(1)か失敗(0)の2値をとる離散確率分布です。 確率質量関数は、 $$P(X=x) […]
03/31/2024 / 最終更新日時 : 11/26/2024 bluest ベイズ 【深層生成モデル】VAEの仕組みをわかりやすく解説|ベイズ統計 こんにちは、青の統計学です。 今回は、深層生成モデルのVAEについて解説いたします。 ノイズに頑健な深層生成モデルとして、画像生成モデルとして利用されているので、生成AIの利用が広まってきた今勉強する価値ありです! VA […]
03/24/2024 / 最終更新日時 : 01/13/2025 bluest ベイズ 【MCMC法】ハミルトニアンモンテカルロをわかりやすく解説|ベイズ統計学 ハミルトニアンモンテカルロ(Hamiltonian Monte Carlo ベイズ統計学において、ハミルトニアンモンテカルロ(Hamiltonian Monte Carlo, HMC)を利用するアプローチは、主に複雑な事 […]
02/11/2024 / 最終更新日時 : 03/25/2024 bluest ベイズ 【因果推論】uplift modeling(アップリフトモデリング)について こんにちは、青の統計学です。 今回は、アップリフトモデリングについて解説していきます。 これはマーケティングや広告などの分野で、特定のアクション(例えば、プロモーションやキャンペーン)が個々の顧客やユーザーに与える影響を […]
01/13/2024 / 最終更新日時 : 11/30/2024 bluest ベイズ 【完全ガイド】MCMC法についてわかりやすく解説|ベイズ推定 MCMC法|Markov Chain Monte Carlo法 今回は、ベイズ理論を使ったパラメータ推定手法であるMCMC法(Markov Chain Monte Carlo法 マルコフ連鎖モンテカルロ法)について解説い […]
12/29/2023 / 最終更新日時 : 11/12/2024 bluest Python 【時系列】状態空間モデルをわかりやすく解説|カルマンフィルタの仕組み こんにちは、青の統計学です。 今回は、状態空間モデルについて解説いたします。 MMMと並び広告効果の予測に使われたりと実務での応用も可能な時系列モデルですが、チューニングや実装の難易度が高いという点もあります。 状態の概 […]
09/03/2023 / 最終更新日時 : 09/09/2024 bluest ベイズ 【第2弾】統計検定準1級のチートシート|最短合格への道 こんにちは、青の統計学です。 こちらの記事だけでは、紹介しきれない内容があったため第二弾のチートシートになります。 【最短合格】統計検定準一級のチートシート|難易度や出題範囲について 統計検定2級はこちら→【最短】統計検 […]
12/27/2022 / 最終更新日時 : 08/26/2024 bluest Python 【kaggle】ベイズ最適化とXGBでtitanicの予測問題を解く|python 今回はハイパーパラメータのチューニング手法の一つである、ベイズ最適について解説いたします。 グリッドサーチやランダムサーチに比べて、短い時間で最適なパラメータを発見できるとされています。 また、今回はデータ分析コンペのk […]
08/21/2022 / 最終更新日時 : 01/13/2025 bluest ベイズ 超幾何分布をわかりやすく解説|非復元抽出 1. 超幾何分布 1.1 超幾何分布とは 超幾何分布は、有限個からなる母集団から非復元抽出を行うときに、「特定の属性を持つ要素がサンプル中に何個含まれるか」を表す確率分布です。 例示:品質検査への応用 このとき、確率変数 […]
07/16/2022 / 最終更新日時 : 01/04/2025 bluest Python マルコフ連鎖をわかりやすく解説【MCMC法への応用】 1. マルコフ連鎖の基本原理 1.1 マルコフ連鎖 マルコフ連鎖 (Markov Chain) は、確率過程の一種です。離散時間マルコフ連鎖を例にとると、時刻 ${t = 0, 1, 2, \dots}$ に観測される状 […]
06/25/2022 / 最終更新日時 : 11/29/2024 bluest ベイズ ベイズ推定をわかりやすく解説|事後分布から推定量を導く方法 ベイズ推定の目的 ベイズの定理からしっかり解説するので、これからベイズ推定について知見を深めたい人や、MCMC法を使ってベイズ推定をしたい方など、さまざまな人におすすめです。 ベイズの定理 まず第一にベイズ統計学は、経験 […]
06/19/2022 / 最終更新日時 : 10/31/2023 bluest Python 【python】ガウス過程回帰の仕組みと実務での応用|ノンパラメトリック機械学習 こんにちは、青の統計学です。 今回はガウス過程回帰について解説いたします。 製造業の現場など、n=20やそこらぐらいのデータセットで予測を行う必要がある時によく使われます。 ガウス過程は少数データとの相性がよく、予測値の […]
06/13/2022 / 最終更新日時 : 10/14/2024 bluest ベイズ 【ベイズ因子】オッズ比の使われ方を紹介します こんにちは、青の統計学です。 今回はロジスティック回帰の解釈で定番の、オッズ比について考えていきます。 オッズ比は二つのカテゴリに分けられるデータに対して有用な指標であり、特に、疾患や事象が発生する確率について研究する際 […]
06/06/2022 / 最終更新日時 : 01/04/2025 bluest ベイズ 【尤度って?】尤度関数と最尤推定量の解説と例題 確率分布のパラメータ\(θ\)を推定する方法の一つとして、最尤推定というものがあります。 最尤推定には、尤度関数を使うことが必須です。まずは尤度関数については見てみましょう。 尤度(likelihood)について 抑えて […]